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SUMMARY

Clinical trial investigators oftcn record a great deal of bascline dala on each paticnt at randomiza-
tion. When reporting Lhe tral's findings such baseline data can be used for (1) subgroup analyses
which explore whether there is evidence that the treatment difference depends on certain patienl char-
acteristics, (ii) covariate-adjusted analyses which aim to refine the analysis of the overall ireatment
difference by taking account of the fact that some baseline characteristics are related to outcome and
may be unbalanced between treatment groups, and (iii) baseline comparisons which compare the base-
line characteristics of patients in each lreatment group for any possible (unlucky) differences. This
papcr examines how these issues are currently tackled in the medical journals, based on e recent survey
of 50 inal reports in four major journals, The statistical ramifications are explored, major problems
are highlighted and recommendations for future praclice are proposed. Key issues include: the overuse
and overinterpretation of subgroup analyses; the underuse of appropriate statistical tests for interaclion;
inconsistencies in the use of covariate-adjustment; the lack of clear guidelines on covariate selection;
the overuse of baseline comparisons in some studies; the misuses of significance tests for bascline
comparability, and the need for trials o have a predefined statistical analysis plan for all these uscs of
baseline dala. Copyright © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Clinical trials usuvally entail the recording of substantial amounts of baseline data on each
patient at randomization. These data document the patient’s current medical condition (for
example, signs, symptoms, quantitative measures, ancillary medications), medical history (for
example, previous disease events, time since diagnosis) and demographics (for example, age,
sex and other personal characteristics).
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When a trial’s results are reported such baseline data have three main uses: (i) subgroup
analyses, whose purpose is to examine if any treatment differences in patients outcome (or
lack thereof) appear consistent across all types of patients or depend on one or more baseline
variables; (ii) covariate-adjusted analyses, whose purpose is to take account of any baseline
variables that are related to patient outcome (especially if they are not balanced across treat-
ment groups) in order to achieve the most reliable statistical estimates and tests for the overall
treatment differences in outcome; (iii} baseline comparisons, whose purpose is to document
the types of patients in the study and to demonstrate the extent to which the treatment groups
were similar prior to commencement of randomized treatment.

This paper aims to briefly describe the key statistical issues that are pertinent to high
quality standards of reporting for these three topics. In each case such desirable standards are
compared with current reporting practice by means of a survey of recent trial reports in major
medical journals. The survey is reported more fully elsewhere [1]. It comprised all reports of
paralle] group clinical trials in which over 50 patients per treatment group were individually
randomized and which were published in the British Medical Journal (BMJ), the Journal of
the American Medical Association (JAMA), the Lancet and the New England Journal of
Medicine (NEJM) during July to September 1997, Fifty trial reports were thus obtained: 24
in the NEJM, 15 in the Lancet, 6 in the JAMA and 5 in the BMJ. A pre-piloted standard
form detailing each report’s uses of baseline data was filled out by three of the authors (SFA,
LEE and LEK) with any discrepancies resolved by consensus across all four authors.

Section 2 addresses subgroup analyses, integrating desirable statistical practice with the
reality of current practice in the journals in order to formulate some key recommendations.
Similarly, Sections 3 and 4 investigate covariate-adjustment and baseline comparability re-
spectively. Section 5 sums up overall.

2. SUBGROUP ANALYSIS

Patients recruited into a clinical trial are not a homogeneous sample. Their response to treat-
ment and the dilfering impact on them of different treatments may well vary in ways that affect
the choice of which treatment is best for which patient. Thus, if in truth there are specific
subgroups of patients for which a new trcatment is more (or less) effective (or harmful) than
15 indicated by the overall comparison with standard treatment in the trial as a whole, we
have a scientific and cthical obligation to try and idenlify such subgroups. As a consequence
most trial reports (35/50 =70 per cent in our survey sample, see Table I} do contain some
results of subgroup analyses.
Several difficultics arise though when undertaking subgroup analyses (2, 3]:

(1} Most trials only have sufficient statistical power (if that) to detect the overall main effect
difference in responsc berween treatment groups, so that if subgroup effects do exist, they
may well go undetected because the trial was not large enough. Indeed, most trials we
surveyed could only have detected very large subgroup effects.

(i) Given the plethora of baseline variables and the tendency not to have a clear predefinition
of which subgroup(s) may be more (or less) differentially responsive to a new treatment,
there are many possible subgroup analyses that could be performed. Hence one needs
to guard against data dredging and the potential for post foc emphasis on the ‘most
interesting” across many subgroup analyses.

Copyright © 2002 John Wiley & Sons, Lid. Staiist. Med. 2002; 21:2917-2930
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Table [. Subgroup analyses in 50 clinical trial repors,

Number of trials

Were subgroup analyses reported? Yes 35
No 15
Number of baseline factors included One 17
Two 3
Three 3
Four 5
Five to six 2
Seven or more 5
Number of outcomes for subgroup analysis One 17
Two 6
Three to five 6
Six or more 6
Total number of subgroup analyses One 8
Two 4
Three to five 8
Six to cight 9
12 to 24 4
Unclear 2
Staristical method used for subgroup analysis Descriptive only 7
Subgroup P-values 13
Interaction test 15
Subgmoup differences claimed Yes 21
No 14

If yes:
Subgroup claim [eatured in abstract and/or conclusions Yes 13
No 8

(iif)

For instance, in our survey only eight trials (16 per cent) reported just one subgroup
analysis. It was common to examine more than one baseline factor, and also to study
each subgroup categorization for several different outcome variables, The total number
of reported subgroup analyses (that is, number of baseline variables times number of
outcomes) varied enormously with a maximum of 24 subgroup analyses and a median
of four subgroup analyses amongst the 35 trials with any at ail. Of course, this does not
include any further unreported subgroup analyses which authors may also have carried
out. In all but a few trials it was not possible to determine whether the subgroup analyses
were according fo a predefined statistical analysis plan or arose from post -hoc data
exploration.

The most appropriate statistical methods for making inferences from subgroup analyses
are often not used in trial reports. In our view, statistical tests for interaction, which
directly examine the strength of evidence for the treatment difference varying between
subgroups, are the most useful approach for evaluating subgroup analyses. Sometimes

Copyright © 2002 John Wiley & Sons, Lid. Staiist. Med. 2002; 21:2917-2930
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the fact that interaction tests usually lack statistical power is put forward to argue against
their use. However, we feel this is the very reason they are of great value: interaction
tests recognize the [imited extent of data available for subgroup analysis, and are the
maost effective statistical tool in inhibiting false or premature claims of subgroup findings.
In the survey, only 15 (43 per cent) of the 35 reports with subgroup analyses used inter-
action tests; 13 reports (37 per cent) instead presented p-values for treatment difference
in each separate subgroup, but subgroup p-values can be misleading. If the overall treat-
ment difference is statistically significant, then it is very likely that some subgroups will
and some will not show a significant treatment difference depending on chance and the
smallness of subgroups. A further seven reports simply presented the subgroup findings
without any statistical tests, observing that all subgroup analyses were consistent with
the ovemll result. Had any subgroup inconsistencies been apparent one assumes some
more formal inference, preferably an interaction test, would have been carried out.

The extent to which subgroup analyses should aflect the interpretation and conclusions
in a trial report is a contentious matter. While responsible triallists need to conclude
whether a treatment effect (or tack of efect) is not generalizable to certain type(s) of
patient, they also need to guard against making exaggerated subgroup claims that are
not sufficiently robust to affect treamment policy. In our survey, 21 frial reports (42 per
cent) claimed to find subgroup differences that appeared incompatible with the overall
treatment comparison, and [3 of these went on to feature such claims in the summary
and/or conclusions. These claims were mostly that the treatment difference existed only
in a particular subgroup (what might be called an ‘all or nothing® interaction), or was
more marked in a particular subgroup (commonly called a “quantitative’ interaction). So
called ‘qualitative’ interactions in which the treatment effect is in opposite directions in
different subgroups are thought to be rare and highly implausible, and indeed did not
occur in this survey.

In general, once the statistical strength of evidence for interaction is documented cor-
rectly, one relies on the wise judgement of the triallists (and also journal referees and
editors) in deciding what cmphasis any subgroup finding should receive. Both our sur-
vey and other experiences lead us to the view that at present subgroup analyses are
overinterpreted by authors (and probably readers as well) and that much greater caution
needs to be exercised when drawing conclusions on subgroups. Biological plausibility,
the number of subgroup analyses performed, their prespecification and the trial’s size all
need to be considered alongside the statistical strength of evidence when weighing up
the all too likely case that any particular subgroup finding, no matter how intriguing, is
prone to be an exaggeration of the truth. In this regard Bayesian strategies for subgroup
analysis [4-6], including tests of qualitative interactions, are an interesting development.

Many of the above issues in subgroup analysis are encapsulated in two examples from our
survey, whose survival plots for the subgroups they focused on are displayed in Figure I.

Such

time-to event survival curves comparing treatment by subgroups are particularly prone to

accentuate suggestions of a subgroup cffect, because they do not present the data’s statistical
uncertainty by including standard errors or confidence limits.

The first example concems the suggestion that psycho-social nursing intervention after my-
ocardial infarction appears to adversely affect cardiac mortality in women but not in men
[7). The article’s summary accentuated this point by only giving results separately for each

Copyright © 2002 John Wiley & Sons, Lid. Statist. Med. 2002; 21:2917-25930
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Figure 1. Examples of subgroup analyses with survival plots. (a) Cardiac death by gender in a study of
psycho-social nursing intervention after myocardial infarction. (b) Heant failurc by previous myocardial
infarction (yes or no) in a trial of anlihyperensive treatment (active versus placebo).

gender, and the concluding sentence states ‘the possible harmful impact of the intervention
on women’. The subgroup p-value for the treaument difference in women, p=0.064 in Fig-
ure 1(a), helped to maintain this interest, whereas the following more appropriate interaction
test would have encouraged a more cautious perspective: there were 22 versus 12 deaths in
women (odds ratio 2.0) but 11 versus 11 deaths in men (odds ratio 1.0) and the interaction
test comparing these odds ratios has p=0.21, demonstrating the lack of evidence that the
intervention’s effect (if any) on cardiac mortality depended on sex.

The second example [8], in Figure 1(5), suggests that antihypertensive treatment reduces
the risk of heart failure more markedly in patients with a history of myocardial infarction.
The observed relative risk reductions for patients with and without such a history are 76 per
cent and 33 per cent, respectively, and the wide 95 per cent confidence interval for the former
(18 to 92 per cent reduction) reflects the fact that it is based on only 5 versus 17 heart failure
occurrences. Accordingly, the authors’ inclusion of the statistical interaction test (p =0.24)
in Lthe Results section, would appear to justily a de-cmphasis of this subgroup finding, out of

Copyright © 2002 John Wiley & Sons, Lid. Statist. Med. 2002; 21:2917-2930
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the many that could have been undertaken. However, the article’s summary drew particular
attention to this subgroup, the final sentence of conclusions stating *amongst patients with
prior MI, an 30 per cent risk reduction was observed’, whereas the overall risk reduction of
43 per cent (with 95 per cent CI 19 to 66 per cent) would seem a more appropriate sumimary
statistic.

3. COVARIATE ADJUSTMENT

Experience shows that for most clinical trials, analyses which adjust for baseline covariates
are in close agreement with the simpler unadjusted treatment comparisons. This is because (a)
the randomization usually results in well balanced treatment groups, and (b) most covariates
are not strongly related to the outcome.

Nevertheless, the statistical properties of covariate-adjustment are quite complex and often
poorly understood, and there remains confusion as to what is an appropriate statistical strategy.
The primary aim is to achieve an unbiassed and statistically efficient treatment comparison
which takes account of baseline factors that predict prognosis, especially those factors that have
some imbalance between treatment groups. In addition, there is some credibility attached to
demonstrating that covariate adjustment does not alter the conclusion derived from unadjusted
analyses. A further benefit can be the creation of a predictive model which combines the
influences of (reatment and prognostic covariates in estimating the expected outcome (and
absolute treatment benefit) for individual patients.

Problems arise in the selection of the covariates. Consideration may be given to baseline
factors that (i) predict outcome, possibly using a stepwise variable selection algorithm, (ii)
are imbalanced between groups (but using what criterion?) and/or (iit) were used to stratify
the randomization, and some would also argue that only covariates that are prespecified in
the protocol or stafistical analysis plan may be permitted. The scope for judgements in an
ill-defined strategy, and biased (for example, most favourable) choices out of a multiplicity
of possible analyses, means that covariate adjusted analyses may rightly be viewed with some
suspicion, often leaving primary emphasis on the unadjusted analysis.

Therefore, let us review some of the statistical properties of covariate adjustment [9~11].
There can be several statistical aims:

(1) to achieve the most appropriate p-value for the treatment difference;
(i} to achieve an unbiassed estimate and confidence interval for the magnitude of treatment
difference in outcome;
(i1} to improve the precision of the estimated treatment difference, thus increasing the statis-
tical power of the trial.

Let us first consider these issues from the idealized situation of two treatments, a Normal
response with known variance and a single covariate also with known variance, as previously
explored by Senn [11].

Let Z, be the standardized imbalance between treatment groups for this covariate x. Under
an unstratified randomization scheme Z; would follow a standardized Normal distribution,
whercas any stratification on x or other variables correlated with x would constrain Z, to
have variance smaller than 1. However, what matters here is the observed value of Z. in
this particular trial. Let p be the comelation between the covariate and outcome within each
freatment.

Copyright © 2002 John Wiley & Sons, Lid. Statist. Med. 2002; 21:2917-2930
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Figure 2. The effect of standardized covariate imbalance Z; and the covariate’s correlation with outcome
¢ on the conditional size of unadjusted one-sided test (true o= 0.025).

Achieving the correct p-value in any tral is often considered important, especially in
pharmaceutical company sponsored trials with a regulatory implication. Conditional on the
observed value of Z;, an analysis of covariance adjusting for x will generate an appropriate
one-sided p-value, that is, prob (ANCOVA p-valve <z |Z, Hy)=a, for any choice of & such
as 0.025 for two-sided 5 per cent significance. Now, this is not so for an unadjusted test of the
treatment difference in mean outcomes since it ignores (he treatment imbalance in a baseline
covariate correlated with the outcome. From Senn, the size of the unadjusted one-sided test,
conditional on the observed Z, is as follows:

prob (unadjusted p-value<a|Z; Hy)

. . Z.—Z.p )
=prob [ standardized normal deviate>» —————2_
P ( A= 07}

where Z, is the standardized normal deviate associated with a one-tail probability «.

We dwell on a one-sided test, because the direction of treatment imbalance affects the two
tails of a two-sided test in contrasting ways. Figure 2 illustrates this impact of Z and o
on desired & =0.25, the most commonly chosen size of such an unadjusted one-sided test.
First, for p=0 the size is unaffected no matter how great the imbalance in x. For a strongly
correlated covariate (for example, with p=0.7) the impact of Z, is marked. For instance,
with Z, ==+ 1.5, the unadjusted « becomes 0.102 in one direction and <0.000[ in the other
direction. Note that even for perfect balance, that is, Z, =0, the unadjusted test has become
markedly conservative (unadjusted ¢ =0.003) due to the fact that perfect balance in a strong
predictor is constraining the outcome variability between treatment groups. In practice, a
correlation as high as 0.7 is quite plausible for the same variable measured at baseline and

Copyright © 2002 John Witey & Sons, Lud. Stutist. Med 2002: 21:2917-2930
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after treatment [12] and the above illustrates one reason why ANCOVA adjusting for this
baseline is crucially important.

In our experience, other baseline covariates, whether quantitative or binary, generally have
much weaker correlations with outcomes, in which case adjustment for such covariates has
less impact on the size of the unadjusted test. For instance, for p=0.1, even a statistically
significant covariate imbalance such as Z =+2.0, leads to conditional ¢=0.015 and 0.038
in the two tails, neither differing much from the desired & =0.025.

The practical conclusion here is that if the correlation is weak, for example, p <0.3, even
a statistically significant covartale imbalance is unimportant (except as an indicator that the
randomization may have been performed incorrectly). On the other hand, if a covarate is
strongly related to outcome, for example, p>>0.5, then it is important to adjust for it regardless
of the extent (or lack) of covaniate imbalance.

Incidentally, these results are independent of sample size, and add weight to the argu-
ment that appropriate covariate adjustment is still important in large trials. However, some
would argue that such obsession with significance testing is not what really matters and
considerations of precision and bias in estimates of mean treatment difference are more
important,

For the same simple idealized Normal known variance model used above, the ratio of
standard errors for the covariate-adjusted and unadjusted estimates of treatment difference =
V(1 — p*). Thus, if p=0.7 the width of the confidence interval is reduced by a substantial 29
per cent, whereas for p=10.1 the reduction is only 0.5 per cent. Consequently, with a single
predefined covariate, for ANCOVA to achieve the same slatistical power as an unadjusted
analysis, the required sample size is reduced proportionately by 1 — p2. Thus with a very
strong predictor with p=0.7, such as may occur with a baseline measure of the outcome,
the required number of patients is roughly halved. The saving is less than 10 per cent,
for p=0.3, a value which is not exceeded for most baseline variables. Incidentally, when
the same measure is obtained at baseline and after treatment, ANCOVA also wins over an
analysis based on changes {13], the matio of standard errors (ANCOVA versus changes) then
being {(L + p)/2}.

Conditional on the observed Z,, the unadjusted estimate of treatment difference is biased
by p Z; standard errors. This gets smaller with increased sample size, but as noted earlier the
impact on type I error does not change with sample size.

This idealized model for a single covariate under Normal theory usefully quantifies the key
desirable consequences of covariate adjustment. However, for binary or survival outcomes,
using logistic or proportional hazard models, respectively, the statistical properties of covari-
ate adjustment are rather different [14-16]. The covariate-adjusted estimates are not made
more precise (in fact the standard error tends to increase slightly) but more importantly the
covariate-adjusted estimates, for example, of odds ratio or hazard ratio, are further from the
null. That is, the unadjusted analysis tends to dilute the impact of treatment by failing to
compare like with like. For instance, at its simplest consider a binary outcome and a binary
covariate strongly related to outcome. The Mantel-Haenszel estimator of the odds ratio com-
paring treatments is then a more focused, more statistically powerful estimate of treatment
cflect than the crude odds ratio from a single 2 by 2 table ignoring the covariate. Amidst these
complexities, the good news is that the other two benefits of covariate-adjustment, achiev-
ing the correct size of test and increasing statistical power, apply equally well to binary and
time-to-event outcomes.

Copyright © 2002 John Wiley & Sons, Lid. Statisi. Med. 2002, 21:2917-25930
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With multiple covariates, both quantitative and binary, the same issues apply, but with
the added complication of which variables to choose. Simulation studies [17, L8] have shown
how post hoc selection of covariates for adjustment out of a larger set of potential covariates
will tend to lead to biased estimates of the treatment effect, especially with small studies.
However, this particular risk has been somewhat exaggerated and the extent to which this
is a serious problem in reasonably large trials has not been adequately explored to date.
A more contentious issue arises if the variable selection procedure is not totally objective,
which allows investigators to focus on the covariate model that best accentuates the estimate
and/or statistical significance of the treatment difference.

Some have argued that prespecification of all covariates for adjustment in a single model
is the best solution, leading to just one predefined covariate-adjusted analysis [10]. While
desirable in principle, this is oRlen unachievable in practice. In many trials, one has inade-
quate prior knowledge as to which baseline factors are related to prognosis. Consequently any
prespecified ‘mandatory’ list of covariates will often include some irrelevant factors and ex-
clude some powerful predictors. Therefore, in real life we see a continuing need for defining
objective variable selection algorithms which lead to the most appropriate covariate-adjusted
model. While this means the chosen covariates themselves could not be prespecified, a precise
predefined statistical strategy for variable selection should overcome somewhat any suspicions
that post hoc selection of covariates might be based on subjective criteria.

Another issue is whether one should automatically adjust for variables used to stratify the
randomization. Some say definitely ‘yes’ [10], but this is not necessarily sensible, especially
if the covariate(s) in question are not actvally related to outcome.

Whether and how to adjust for centre in a multi-centre trial is another complex issue, which
requires more space than is possible here. Briefly, our experience suggests it rarely makes
any difference, there is a lack of clear guidelines on what to do about smail centres or lots of
centres or aggregation of centres, but nevertheless demonstration that centre-adjusted analyses
agree with the unadjusted analyses can help the credibility of the latter.

Now, let us retumn to the survey of trial reports, and see how coveriate-adjustment is being
used in practice. Table I presents the main findings; 36 reports (72 per cent) did include
covariate-adjusted analyses, but mostly as a secondary back-up to the vnadjusted analyses.
Only in 12 reports did the covariate-adjusted analyses get primary (or equal) emphasis. This
focus on unadjusted analyses may arise for several reasons: (i) authors and readers prefer the
simplicity and clarity of unadjusted findings; (ii) suspicions regarding the potential manipula-
tions of data-driven covariate-adjustment make them less credible; (iii) covariate-adjustment
rarely makes much difference so why make the conclusions more complicated; (iv) in some
trials, there is insufficient clinical agreement or interest in considering which covariates should
(or could) be adjusted for.

Trals varied substantially as regards the number of covariates adjusted for; some chose Just
on¢ covariate, but it was quite common to include five or more covariates and in a few trials
the adjustment was so unclear that the number was unknown.

The reasons underpinning the choice of covariates were often not given, but when known
the two main reasons were:

(i) covariates that predict outcome, 12 trials, six of which adopted a stepwise varable-
selection procedure;
(ii) covariates imbalanced between treatment groups, five (rals.

Copyright © 2002 John Wiley & Sons, Ltd. Statisi. Med. 2002; 21:2917-2930
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Table II. Coveriate adjustment in analysis of paticnt response by freatment.

Number of trials

Were primary outcome analyses done No, unadjusted only 14
using covariate adjustment? Yes 36
Which analyses received more emphasis? Unadjusted 38
Covariate adjusted 11
Equal emphasis 1
Number of covariates included One 7
Two 6
Three 4
Four 2
Five 10 nine I
Ten or more 2
Unclear 4
Dvid covariate adjusted analysis alter No 29
the trial conclusions, compared to Yes ]
unadjusted analyses? Only unadjusted given 14
Only adfusted given 6

Reasons for choice of covariates®
No reason given 15
Covariates were (or expected to be) prognostic
Covariates imbalanced between groups
Centre or country adjusted for
Baseline value of quantitative cutcome
Other treatment factor in a factorial trial
Covariates used in stratified randomization

—
— b L oAb

*More than one reason in some trials.

In only one report [19] did the conclusions alter as a result of covariate-adjustment. This
seems to have arisen because nearly one-third of patients were excluded because of missing
covariate data, surely an inappropriate analysis.

In three trials the baseline value of a quantitative outcome was adjusted for. As mentioned
above the strong correlation present here mandates that ANCOVA is indeed the appropriate
analysis [12,13]. However, informal inspection of the same four journals this year (2000)
indicates that some reports are still failing to use ANCOVA, either ignoring the baseline or
analysing changes instead.

A further problem evident from our survey is that some reports present the covariate-
adjusted results in a manner that will be hard to understand for many readers. For instance,
one report [20] gave group differences in event rates on a logarithmic scale, adjusted for
eight covariates, whereas transformation back to geometric means (or avoidance of the log
transform altogether) would have been more helpful. Another report [21] undertook a mixed
linear model for repeated measures with both baseline and time-dependent covariates, which
surely only a small minority of readers could have followed. Thus, more effort needs to be
put into making covariate adjustments better described and more comprehensible.

Copyright © 2002 John Wiley & Sons, Lid. Statisi, Med. 2002; 21:2917-2930
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Overall, what matters is to adjust for the appropriate covariates (that is, the strong pre-
dictors of outcome} and to make one's statistical policy for covariate adjustment completely
objective. While one can of course recommend prespecification of the specific covariates to
adjust for, this will be unrealistic in many instances. While variable selection procedures could
be manipulated and may lead to biased estimates in smaller trials, we still feel they have a
useful role in formulating covariate-adjustment in larger trials, and wish to encourage more
methodological research on this topic.

For peace of mind and credibility some reports will doubtless continue to adjust for irrel-
evant covariates (for example, those used in stratified randomization or unbalanced between
groups, but which are not related to outcome), but at least no harm is done by such statistical
EXCesses.

4. BASELINE COMPARABILITY

In most trial reports Table I is devoted to comparing the distributions of several baseline
variables by treatment group. The aims of this exercise are:

L. to describe the baseline characteristics of the sample of patients included;

2. to demonstrate that the randomization has worked well by achieving welt balanced treat-
ment groups at baseline;

3. to add credibility to the frial results, specifically encouraging confidence in unadjusted
outcome analyses as being without any serious bias;

4. to identify any unlucky imbalances between treatment groups that may have arisen by
chance.

The first of these aims is perhaps the most useful, since it is important to document who
is in the trial so that we can assess to whom the tral findings can be extrapolated. However,
it does not actually require treatment comparison as such,

Most trials have a ‘Table I’, for example, 46 (92 per cent) did so in our survey, and it
is worth dwelling on their content, as shown in Table III. The reports vary enormously in
the number of baseline features included, with a median of 14 and a maximum of 41, the
latter [22] being a particularly enonmous table occupying nearly a whole journal column. It
might be helpful if some authors were more parsimonious in their inclusion of variables in
‘Table I’, focusing on a smaller subset of key variables that either crucially define the patient
sample and/or are likely predictors of patient outcome. Perhaps authors could have available
on request a more extensive list of baseline features, and of course more expansive reports,
such as for regulatory submissions, can include a larger baseline table.

One stylistic excess is to present the baseline results both for each treatment group and
for all groups combined, whereas one or other would be sufficient. A further stylistic issuc
is the duplication inherent in giving both baseline counts and percentages. Again, for such
background data, perhaps one or the other is sulficient. Also, the inappropriate use of standard
errors for baseline variables was mostly avoided, the more informative standard deviations
being better descriptors of between-patient variation.

Another contentious issue is the use of significance tests for baseline comparison. It is a
common practice; 24 trials (48 per cent) in our survey performed such tests. As far as we

Copyright © 2002 John Wiley & Sons, Lid. Starist, Med. 2002; 21:2917-2930
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Table Il Baseline variables by trcatment group in 50 clinical trial reports.

Number of trials

Number of bascline variables compared None 4
One to four !
Five to nine 14
Ten to 19 24
20 to 29 5
30 or more 2
Significance tests for baseline diflerence performed Yes 24
No 26
Baseline imbalances noted Yes 17
No 33

can calculate, 299 tests were thus performed of which 18 (6 per cent) reached p<0.05.
By definition, all baseline differences are due to chance (unless the randomization goes
wrong).

As illustrated in Section 3, the importance of a baseline difference depends on the variable’s
strength of association with outcome and the standardized magnitude of this difference, called
Ze. A strong predictor's imbalance could matter without being statistically significant, while
such statistical significance is irrelevant for a baseline variable not related to outcome. Thus,
P-values for baseline differences do not serve a useful purpose [23,24], since they are not
testing a useful scientific hypathesis.

Particularly excessive is the addition of an extra column of P-values in the table of
baseline data [25]. Others report the significance of bascline differences, but give no in-
sight into whether such factors were related to outcome [26]. Thus, of the 17 trals in
which baseline differences were noted, most ignored this fact when analysing the outcome
results.

5. CONCLUSIONS

While there have been improvements in the standards of reporting for clinical trials, aided by
guidelines such as CONSORT [27,28], this paper has identified some important deficiencies
and inconsistencies as regards the uses of baseline data in clinical trial reports.

Subgroup analyses are often given too great a prominence and fail to use appropriate meth-
ods of statistical inference such as interaction tests. There also appears a lack of consistency
regarding the use of covarate-adjusted analyses, perhaps largely because their rationale and
statistical properties are poorly understood. Though less serious, there are also improvements
to be made in the reporting of baseline comparisons.

By linking our methodological arguments to a survey of recent trial reports, we intended
to convey a sense of reality to the discussion on how to best undertake and report sub-
group analyses and covanate adjustments. We hope this approach enhances the debate and
the development of clearer guidelines for statistical reporting,
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Of overniding importance is the nced for each clinical trial to define a clear and coherent
policy for such uses of baseline dala in the context of an overall predefined statistical anal-
ysis plan. Thus, the risk of post hoc exaggerated emphases across a multiplicity of possible
analyses can be reduced, and readers can have greater confidence in the validity of authors’
conclusions.

While subgroup analysis may have the more obvious potential for ‘statistical sins’, there
is more need for statistical debate and methodological research on what truly constitutes the
best strategy for covariate-adjusted analyses. We have tried to give some useful insights and
recommendations, but still feel that the statistical properties of covariate adjustment, in the
common situation when one does not know the important outcome predictors in advance, still
need to be more fully understood. :
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