Petitti, DB. Meta-analysis, Decision analysis, and Cost-effectiveness analysis. Chapter 2,
Section 2. New York: Oxford University Press, 2000: 17-28.

2.2 DECISION ANALYSIS

2.2.1 Overall Goals, Main Uses, and Description of Steps

Decision analysis is a systematic quantitative approach for assessing the relative
value of one or more different decision options. Historically, it was developed as
a method to help clinicians make decisions on how to manage individual patients
(Weinstein and Fineberg 1980; Sox et al. 1988). It is increasingly used to help
develop policies about the management of groups of patients by providing infor-
mation on which of two or more strategies for approaching a medical problem has
the ‘‘best’’ outcome or the most value. Decision analysis often is the conceptual
model used for cost-effectiveness analysis, and it is used increasingly for this pur-
pose.

Decision analysis is useful when the clinical or policy decision is complex and
information is uncertain.

EXAMPLE: Gallstones are often detected in persons who have no symptoms
of gallstone disease. In such persons, a decision must be made on whether
to do a ‘‘prophylactic’’ cholecystectomy or to wait until symptoms develop
to operate. Ransohoff et al. (1983) did a decision analysis to compare the
effect on life expectancy of prophylactic cholecystectomy and expectant wait-
ing.

If a person has a prophylactic cholecystectomy, an immediate conse-
quence is the possibility of operative death. If a person does not have a
prophylactic cholecystectomy, possible consequences are death from other
causes before the gallstones cause symptoms or development of pain or an-
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other complication of biliary disease before death from another cause, events
that would require a cholecystectomy. Operative mortality after cholecystec-
tomy is influenced by the age of the patient and by the presence during the
operation of complications of gallstone disease, such as acute cholecystitis.
The decision about whether to do a prophylactic cholecystectomy or to wait
is complex at least in part because the consequences of waiting are far re-
moved in time from the decision about whether or not to operate.

The analysis by Ransohoff et al. (1983) showed that a decision to do
prophylactic cholecystectomy would result in an average loss of 4 days of
life for a 30-year-old man and 18 days for a 50-year-old man. The analysis
supports a decision to forgo prophylactic cholecystectomy.

There are five steps in a decision analysis (Weinstein and Fineberg 1980). First,
the problem is identified and bounded. Second, the problem is structured, a process
that usually includes construction of a decision tree. Third, information necessary
to fill in the decision tree is gathered. Fourth, the decision tree is analyzed. Last,
a sensitivity analysis is done.

2.2.2 Identifying and Bounding the Problem

The first step in a decision analysis is to identify and bound the problem (Weinstein
and Fineberg 1980). Problem identification consists of stating the main issue con-
cisely. Identifying and bounding the problem consists of breaking the problem
down into its components. The first component of a problem is always identification
of the alternative courses of action.

EXAMPLE: Fifteen new cases of measles are reported in a small urban area.
This is the first report of measles in the area in several years. All of the cases
are in children age 8§ through 15 who previously received only one measles
vaccination. This schedule was recommended at the time these children were
infants, but it is now known not to confer complete and lifelong immunity
to measles in all persons who are vaccinated. The problem is deciding
whether to recommend that children who were vaccinated only once be re-
vaccinated. The first component of the problem is identification of the alter-
native courses of action. One course of action is to recommend revaccination
for all children 8 through 15; the alternative is not to recommend revaccin-
ation.

Other components of the problem are then identified. These are usually events that
follow the first course of action and its alternative. The final component of the
decision problem is identification of the outcome. -

EXAMPLE: The relevant event that follows revaccinating or not revaccinat-
ing children is exposure to an infectious case of measles. Upon exposure to
an infectious case, children either contract or do not contract measles. If they
contract measles, the outcome of interest (for the purpose of this example)
is death from measles.



OVERVIEW OF THE METHODS 19

2.2.3 Structuring the Problem

To structure the problem in a decision analysis, a decision tree is constructed. The
decision tree depicts graphically the components of the decision problems and
relates actions to consequences (Schwartz et al. 1973).

The building of a decision tree is guided by a number of conventions. Thus,
by convention, a decision tree is built from left to right. When time is an issue,
earlier events and choices are depicted on the left and later ones on the right.

A decision tree consists of nodes, branches, and outcomes. There are two kinds
of nodes—decision nodes and chance nodes. Decision nodes are, by convention,
depicted as squares. Chance nodes are depicted as circles. Outcomes are depicted
as large rectangles. Branches are conventionally drawn at right angles to nodes;
they connect nodes with nodes and nodes with outcome.

EXAMPLE: Figure 2-1 is the skeleton of a decision tree with nodes, branches,
and outcomes labeled.

Event 1 f
outcome
Decision Option Chance
Node
Event 2
outcome

Decision
Node
Event 1 BN
1 outcome
Alternative Action Chance
Node
Event 2
outcome
Branch /
Branch .

Figure 2-1 Hypothetical decision tree. The decision node is represented with a square.
Chance nodes are represented with circles. Outcomes are represented with rectangles.
Branches are drawn at right angles to the decision and chance nodes.
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Re-vaccinate

Don't Re-vaccinate

Figure 2-2 The first step in construction of a decision tree for the measles revaccination
problem. The decision node is drawn as a square. The two alternatives—revaccinate
and do not revaccinate—are represented as branches.

Decision nodes identify points where there are alternative actions that are under
the control of the decision maker. In the simplest problem, the decision node de-
scribes the problem.

EXAMPLE: Figure 2-2 shows the beginning of a decision tree for the problem
of whether or not to recommend measles revaccination of chiidren 8 to 15.
The square decision node at the left of the diagram represents the decision;
the alternativé courses of action—to recommend revaccination or not to rec-
ommend revaccination—are labeled on the horizontal portions of the
branches.

Chance nodes identify points where one or more of several possible events that
are beyond the control of the decision maker may occur. Chance nodes for the
same events should line up horizontally in the decision tree.

Probabilities are associated with the events depicted at chance nodes. At any
given chance node, the sum of the probabilities of the events must be equal to 1.
That is, the chance node defines events that are mutually exclusive and jointly
exhaustive.

EXAMPLE: Figure 2-3 is a decision tree for the measles revaccination prob-

_lem. The circular chance nodes identify the first event that follows the de-
cision to revaccinate—either children are exposed to measles or they are not
exposed to measles. This event is out of the control of the decision maker.
The sum of the probabilities of being exposed or not being exposed to mea-
sles is 1.
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Exposed

Re-vaccinate

Not Exposed

Exposed

Don't Re-vaccinate

)
U

Not Exposed

Figure 2-3 The second step in construction of a decision tree for the measles revac-
cination problem. Chance nodes that represent the likelihood of being exposed to mea-
sles are drawn.

EXAMPLE: Figure 2-4 is a decision tree for the measles problem with cir-
cular chance nodes to also identify events that follow the exposure to measles.
Children exposed to measles either get measles. or they do not get measles.
Again, this is an event that is out of the control of the decision maker, and
it is depicted by a chance node. The sum of the probabilities of getting or
not getting measies is 1.

In the decision tree, outcomes are the consequences of the final events depicted in
the tree. Outcomes may include life or death; disability or health; or any of a variety
of other risks or benefits of the treatment.

EXAMPLE: The rectangular boxes in Figure 2-5 identify the outcome of
getting and of not getting measles. For this example, the outcomes of interest
are death or nondeath from measles.

Most current decision analyses do not focus simply on the comparison of decision
options in terms of their effect on life and death. They focus on the amount of
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Get Measles
Exposed
Don't Get Measles
Re-vaccinate &
Get Measles
Not Exposed
Don't Get Measles
(]
Get Measles
Exposed
Don't Get Measles
Don't Re-vaccinate
O
Get Measies
Not Exposed

Don't Get Measies

Figure 2-4 The third step in construction of a decision tree for the measles revaccin-
ation problem. For each branch of the exposed/not exposed dichotomy represented in
the prior step, the chance of getting or not getting measles is represented with a chance
node.

extension in life and on measures of the quality of life. This focus recognizes the
use of medical care to do things other than prevent death. Moreover, everyone dies,
and analyses of medical interventions can reasonably expect only to delay death,
not to prevent it. The outcome measures used in many current decision analyses is
life expectancy or quality adjusted life expectancy. Estimation of quality adjusted
life expectancy involves the measurement of utilities. A utility is a measure of the
preference for the outcome to society or to an individual. Chapter 11 is devoted to
a description of the concept of utilities and the methods for measuring utilities.
Chapter 13 discusses incorporation of measures of utility into decision analysis and
cost-effectiveness analysis.

2.2.4 Gathering Information to Fill in the Decision Tree

The next step in the decision analysis is to gather information on the probabilities
of each chance event. Information gathering for decision analysis almost always
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Get Measles lL)_Ie m
ive
Exposed oo -WELL
Don't Get Measles Live
Re-vaccinate 5
Die
Get Measles ] DEAD
Not Exposed UTle
Don't Get Measles — m
\] Live
L
Die ’
Get Measles m
Exposed thle
Don't Get Measles Zle m
Don't Re-vaccinate 4(% =
Get Measles oe
Not Exposed te
Don't Get Measles D_‘e m
Live

Figure 2-5 Final decision tree for the measles revaccination problem. The chances of
dying or remaining alive after getting or not getting measles are represented with chance
nodes, and the outcome is represented as a rectangle. In this problem, the outcome is
death or remaining well, which is the same as the final event.

uses one or more of the following: literature review, including meta-analysis; pri-
mary data collection; consultation with experts. After the information on the prob- -
abilities and the outcome is obtained, it is recorded on the decision tree.

EXAMPLE: In the context of an epidemic of measles in an inner-city pop-
ulation, experts estimate that 20 out of every 100 children age 8 through 15
will come in contact with an infectious case of measles each year. Literature
review reveals that the probability of getting measles if exposed to an infec-
tious case is 0.33 in a child who has had only one measles vaccination and
0.05 in a child who is revaccinated (Mast et al. 1990). The probability of
getting measles in children who are not exposed to measles is, of course,
zero. During the current epidemic, the probability of dying from measles if
a child gets measles is 23 per 10,000 cases, or 0.0023 (Centers for Disease
Control 1990). It is assumed that the probability of dying from measles in
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Die (0.0023)
Get Measles (0.05) : ::DEAD
Live (0.9977)
Exposed (.20)
Die (0.0)
Don't Get Measles (0.9
Live (1.0)
Re-vaccinate
O
Die (0.0023)
Get Measles (.00) m
Live (0.9977)
Not Exposed (.80)
Die (0.0)
Don't Get Measles (1.00) DEAD
Live (1.0)

Die (0.0023)
Get Measles (0.33) DEAD
Exposed (.20)
Don't Get Measles (0.67) ?le 09
Don't Re-vaccinate He (1)

.
A\

Die (0.0023)
Get Measles (.00)

Live (0.9977)

|

WELL

Not Exposed (.80)

Die (0.0)
Don't Get Measles (1.00) DEAD
Live (1.0)

;

WELL

Figure 2-6 Measles decision tree showing all of the probabilities used in the analysis.

children who don’t get measles is zero. Figure 2-6 shows the decision tree
on which these probability estimates are shown.

2.2.5 Analyzing the Decision Tree

The decision tree is analyzed by a process called folding back and averaging. The
final result is an estimate of the probability of the expected outcome of each of the
decision alternatives.

Specialized computer software for analyzing decision trees is available. How-
ever, the computations necessary to analyze decision trees are simple arithmetic
operations that can be done with widely available spreadsheet programs. Here, the
mechanics of the process of folding back and averaging are illustrated by analyzing
the decision tree as if it were two spreadsheets. Showing these computations as
spreadsheet computations facilitates an understanding of the mechanics of decision
analysis.
~ The decision tree is considered to consist of spreadsheets, one for each of the
decision alternatives. The number of rows in each spreadsheet is equal to the
number of outcome boxes in the decision tree. The spreadsheet has a column for
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each probability estimate and a column for the estimated probability of the out-
come.

EXAMPLE: Table 2-2 recasts the measles problem as two blank spread-
sheets—one for the revaccination decision option and one for the no-
revaccination option. For each spreadsheet, there are eight rows, because
there are eight outcome boxes in the decision tree. There are three columns,
one for each probability estimate and one for the outcome.

After the spreadsheets are set up, the probabilities are filled in.

EXAMPLE: Table 2-3 shows the spreadsheet for the revaccination arm of the
decision tree with the relevant probabilities in their proper columns.

The next step is to carry out the process of folding back and averaging. For
each row, all of the probabilities in the row are multiplied together. This is folding
back the decision tree. The products of the rows that represent the same outcome
(die or don’t die) are summed for each decision option. This is averaging. The sum

Table 2-2  Measles decision analysis as a spreadsheet

Revaccination

Probability Probability Probability
of of Getting of
Exposure Measles Outcome

die
don’t die
die
don’t die
die
don’t die
die
don’t die
No Revaccination

Probability Probability Probability
of of Getting of
Exposure Measles Outcome

die
don’t die
die
don’t die
die
don’t die
die
don’t die
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Table 2-3 Measles decision analysis as a spreadsheet

Revaccination
Probability Probability Probability
of of Getting of

Exposure Measles Outcome

0.2 0.05 0.0023 die

0.2 0.05 0.9977 don’t die
0.2 0.95 0.0000 die

02 0.95 1.0000 ' don’t die
0.8 0 0.0023 die

0.8 0 0.9977 don’t die
0.8 1 0.0000 die

0.8 1 1.0000 don’t die

No Revaccination
Probability Probability Probability
of of Getting of

Exposure Measles Outcome

0.2 0.33 0.0023 die

0.2 0.33 0.9977 don’t die
0.2 0.67 0.0000 die

0.2 0.67 1.0000 don’t die
0.8 0 0.0023 die

0.8 0 0.9977 don’t die
0.8 1 0.0000 die

0.8 1 1.0000 don’t die

of the products is the expected value of that outcome for the specified decision
option.

EXAMPLE: Table 2-4 shows the measles problem with a column labeled
“‘product’ for each row. The number in the column labeled ‘‘product’ is
the product of the probabilities for the corresponding row. For example, the
value in the first row of the column labeled “‘product’ is 0.000023, which
is

0.2 X 0.05 X 0.0023

The expected probability of death from measles in the example is equal to
the sum of the values in the product column for the rows that correspond to
the outcome ‘‘die.”” For the revaccination option, this is

0.000023 + 0.000000 + 0.000000 + 0.000000 = 0.000023
For the no-revaccination option, it is

0.000152 + 0.000000 + 0.000000 + 0.000000 = 0.000152
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Table 2-4 Measles decision analysis as a spreadsheet

Revaccination
Probability Probability Probability
of of Getting of
Product Exposure Measles Outcome
0.000023 0.2 0.05 0.0023 die
0.009977 0.2 0.05 0.9977 don’t die
0.000000 0.2 0.95 0.0000 die
0.190000 0.2 0.95 1.0000 don’t die
0.000000 0.8 0 0.0023 die
0.000000 0.8 0 0.9977 don’t die
0.000000 0.8 1 0.0000 die
0.800000 0.8 1 1.0000 don’t die
Sum for death
0.000023
No Revaccination
Probability Probability Probability
of of Getting of

Product Exposure Measles Outcome
0.000152 02 0.33 0.0023 die
0.065848 0.2 0.33 0.9977 don’t die
0.000000 0.2 0.67 0.0000 die
0.134000 0.2 0.67 1.0000 don’t die
0.000000 0.8 0 0.0023 die
0.000000 0.8 0 0.9977 don’t die
0.000000 0.8 1 0.0000 die
0.800000 0.8 1 1.0000 don’t die

Sum for death
0.00152

Difference between Revaccination and No Revaccination

Death 0.000129

Difference Expressed as Events per | 00,000

Death 12.9

27

The final step is to compare the two strategies by subtracting the results of the
preceding calculations for the revaccination arm from the result for the alternative

arm.

EXAMPLE: The difference in the expected probability of death from measles

between a strategy of revaccination and a strategy of no-revaccination is

0.000152 — 0.000023 = 0.000129
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This is interpreted to mean that 12.9 deaths from measles are prevented per
100,000 children revaccinated.

2.2.6 Sensitivity Analysis

Analysis of a decision tree virtually always includes sensitivity analysis. Sensitivity
analysis is described in detail in Chapter 13. The overall goal of sensitivity analysis
is to assess the stability of the conclusion of the analysis to assumptions made in
the analysis. Sensitivity analysis also may identify crucial areas of information
deficiency and may guide further research.

Assumptions about the probabilities used in the analysis are among the most
important assumptions made in the analysis. A sensitivity analysis varying these
probabilities one at a time while holding all of the other variables in the analysis
constant is almost always done.

EXAMPLE: The probability of being exposed to an infectious case of measles
varies according to the area of the county. It is 1 per 100 in the suburban
areas, whereas it is 45 per 100 in one inner-city area where an epidemic is
in progress. The results of a sensitivity analysis varying the probability of
exposure to an infectious case of measles between 0.01 and 0.45 is shown
in Table 2-5. The number of deaths from measles prevented per 100,000
children revaccinated is highly dependent on the assumption about the prob-
ability of being exposed to an infectious case. Revaccination is estimated to
prevent less than 1 death from measles per 100,000 children revaccinated in
the low-risk area and 29 in the highest risk area.

Table 2-5 Results of sensitivity
analysis varying probability of exposure

to measles
Assumed Net Number of Lives
Probability of Saved per 100,000
Exposure Children Revaccinated
0.01 0.6
0.05 ’ 32
0.10 6.4
0.15 9.7
0.20° 12.9 -
0.25 16.1
0.30 19.3
0.35 22.5
0.40 25.8
045 29.0

2Probability in baseline analysis.
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of decision analysis. The intended audience is individuals who are learning how to
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Over the past ten years, our group at the University
of Toronto has taught a one-semester course on de-
cision analysis. Unlike educational initiatives that
solely focus on readings about and discussions of
decision analysis, our course has required that each
student perform a decision analysis. This requires
building a decision tree on paper, modeling that tree
on a computer, obtaining probabilitics and utilities

by direct measurement or literature review, evalu-

ating the tree, performing sensitivity analyses, pre-
senting the study to peers, and writing up the anal-
ysis. Several of the students have gone on to publish
their work.”* To pass the course, each student is
required to develop a model that "works."”

In this series’ " and the accompanying note on
presentation,” we attempt to impart what we, as
teachers, have learned about the practical issues of
performing decision analysis. Much of what we have
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learned has come from teaching our students how
to develop a working model.

The intended audience for this series is individ-
uals who are learning how to perform decision anal-
yses. The series assumes that the reader is already
familiar with the concepts of decision analysis and
has rcad and comprehended several decision anal-
yses before trying his or her hand at one. Before
embarking on this series, the reader should read a
two-part users’ guide aimed at consumers of deci-
sion analyses'™'® to achieve a grounding in basic
concepts such as decision nodes, probability nodes,
expecled value, tree representation, sensitivity, and
threshold analyses, and is also referred to two text-
books.'™" The goal of the present series is to give
practical suggestions for performing decision anal-
ysis.

When Is Decision Analysis Appropriate?

One of the first steps in a decision analysis is to
decide whether the technique is appropriate for the
given question. Two issues merit special attention.
First, there should be some uncertainty about the
appropriate clinical strategy for patients with a given
health state. There are some circumstances in clin-
ical medicine when published primary clinical evi-
dence already clearly identifies the optimal clinical
strategy. For example, patients who have carotid ar-
tery stenosis of more than 70% after suffering tran-
sient ischemic attacks clearly benefit from carotid
endarterectomy, as demonstrated by the NASCET

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Trial.”” One need not perform a decision analysis of
this question. However, most clinical decisions are
not as clearly supported by direct evidence.

Sometimes randomized trials have been per-
formed but the optimal decision remains uncertain
because several outcomes are involved. The ran-
domized trials of anticoagulation in atrial fibrilla-
tion, for example, show a reduction in the risk of
stroke but an increased risk of bleeding and, in
some Irials, a considerable dropout because patients
do not wish to be on coumadin for indefinite peri-
ods of time. A decision analysis®* can incorporate
these three outcomes as well as possible different
levels of risk depending on patient characteristics
le.g., age, other existing cardiac discase). Such a
model can help the decision maker understand the
risk-benefit tradeoff more explicitly.

The second main issue in assessing the potential
value of a decision analysis is to ensure that there is
a meaningful tradeoff in the problem. Decision anal-
yses always require comparison of at least two clin-
ical strategies. One strategy ought to contain advan-
tages and countervailing disadvantages. If one
strategy clearly dominates the other because it re-
sults in lower rates of adverse disease outcomes, less
risk of treatment side effects and better utilities, then
a decision analysis is not necessary. An example of
this situation might be a noninvasive diagnostic
technique (such as echocardiography) compared
with an equally accurate but more invasive diagnos-
tic technique (such as angiography) for assessing
myocardial wall motion or thickness. Of course, de-
cision-analytic models can also be used to estimate
the cost—elfectiveness of interventions involving
dual outcomes such as costs and utilities. In this
circumstance, one strategy may clearly be better
than the other in the clinical sense but result in
higher expected costs. In this series, however, we
focus on models thal have only one clinical outcome
measure.

Accuracy versus Simplicity

Decision-analytic models must be sufficiently
complex to incorporate the important events and
values, yet sufficiently simple to be understandable.
A decision tree is not a complete representation of
“the real world” but rather a simplified and highly
stylized model of the most important components.
To determine the appropriate level of complexity,
the analyst must consider whether the model cap-
tures the key issues necessary to fully describe the
risk—benefit tradeoff. If a key element of the risk—
benefit tradeoff is missing, the model will not
achieve its goal of helping the reader understand the
tradeoff.

MEDICAL DECISION MAKING

A second major consideration concerns availabil-
ity of data. In some circumstances, analysts will wish
to develop more complex models to better fit the
nature of the problem. However, data for such a
complex tree, such as a Markov madel (described
in Part 5 of this series)” that uses transition prob-
abilities from one state to another over successive
short time periods, are often unavailable. In these
circumstances, it may be wise to develop a simpler
model. Like others,” we have often found that the
insights derived from a simple model are similar to
those derived from a complex formulation. We en-
courage beginners to develop the simplest models.

How many strategic alternatives should be in-
cluded? Some clinical questions require consider-
ation of multiple combinations of several inter-
ventions. For example, in suspected pulmonary
embolism, a simple model would consider empiri-
cally anticoagulating the patient, or performing tests
such as a ventilation—perfusion lung scan, venous
doppler ultrasonography, impedence plethysmog-
raphy, and angiography. The various combinations
would result in dozens of possible strategies. The
best approach for modeling such a circumstance is
to limit the number of options to those that are
clearly different from each other and cover the spec-
trum of the problem. Thus, one might consider only
three options in the pulmonary embolism example:
doing nothing further, anticoagulating without fur-
ther tests, and performing a ventilation-perfusion
lung scan and going on to angiography only if its
result is neither clearly positive (high-probability
scan) nor clearly negative (normal scan). One can
always add other options later on.

Time Frame

In eomparing outcomes of alternative strategies,
the analyst must determine an appropriate time
frame. When considering alternative strategies for
preventing or treating chronic illnesses, the time
frame should be long. When considering therapeu-
tic strategies to avoid short-term complications {e.g.,
perioperative management issues), the time frame
can be brief. Thus, the time frame will depend upon
the nature of the clinical problem.

In choosing an appropriate time frame, one con-
fronts the same tradeofl as noted in the above sec-
tion on accuracy versus simplicity, namely desire for
completeness versus availability of data. Most clini-
cal studies including randomized (rials have rela-
tively limited time frames. Even for trials involving
chronic diseases such as coronary artery disease,
the period of observation is usually between one and
three years and rarely as long as five years. Occa-
sionally one gets reports of long-term follow-up, but

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VOL 17/NO 2, APR-JUN 1997

the observation periods in these reports rarely ex-
ceed ten years.”? Some cohort studies, such as the
Framingham Study, have much longer periods of
observation. One, therefore, must balance the desire
for complete long-term follow-up with the availabil-
ity of valid and precise data. Most analysts will have
to extend the period of observation of a randomized
trial for their analysis and therefore will have to ex-
trapolate the data. The performance of extensive
sensitivity analyses around these extrapolations is
important.
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tervals or cycles.
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Part 2—Building a Tree

ALLAN S. DETSKY, MD, PhD, GARY NAGLIE, MD,
MURRAY D. KRAHN, MD, MSc, DONALD A. REDELMEIER, MD, MS(HSR),

DAVID NAIMARK, MD

This part of a five-part series covering practical issues in the performance of decision
analysis outlines the basic strategies for building decision trees. The authors offer six
recommendations for building and programming decision trees. Following these six
recommendations will facilitate performance of the sensitivity analyses required to
achieve two goals. The first is to find modeling or programming errors, a process known
as “debugging” the tree. The second is to determine the robustness of the qualitative
conclusions drawn from the analysis. Key words: decision analysis; expected value;
utility; sensitivity analysis; decision trees; probability. (Med Decis Making 1997;17:

126-135)

Software

We teach students to build their trees using
SMLTREE, a DOS-based software package (SMLTREE.
Hollenberg JP. Version 2.9. Roslyn, NY). Though
many other software packages {e.g., DECISION MAKER,
Pratt Medical Group, Boston, MA} are available,
SMLTREE is widely used by practitioners as well as
students of decision analysis and comes with an ex-
cellent tutorial teaching the students the nuts and
bolts of programming a tree. Because this series is
intended to be a practical "how to" guide, some of
the discussion, particularly the discussion related 1o
debugging the tree, is not directly applicable to solv-
ing decision problems using spreadsheets, influence
diagrams, or other software packages.

Decision Analysis Example: Giant Cell
Arteritis

We use one clinical scenario throughout the rest
of the series: the choice of management strategies
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for patients presenting with clinical features that
suggest giant cell arteritis (GCA). This example is a
modification of data found elsewhere.’

Giant cell arteritis is a vasculitis that affects large
and medium-sized vessels, mostly in elderly pa-
tients. Patients’ symptoms may include headache,
fever, and fatigue. When confronted with such a pa-
tient, clinicians are faced with diagnostic and treat-
ment options. Giant cell arteritis can lead to a very
severe complication of blindness. Steroids are said
to decrease the risk of blindness but come with the
risk of side effects such as hypertension, fluid reten-
tion, and avascular necrosis of bone. There is a test
for GCA, i.e., biopsy of the temporal artery can reveal
vasculitis in the specimen. However, the sensitivity
of that test is not ideal.

We focus on three of the strategies compared in
the paper by Buchbinder and Detsky": treating no
patient with steroids, treating all patienis with ste-
roids, and performing a temporal artery biopsy and
treating positive cases only.

The Six Recommendations

In the following section we illustrate six recom-
mendations or tips for building a decision model.
We have developed these tips for our students and
find that if they are followed, it is much easier to
build a tree that “functions” appropriately when
performing sensitivity analyses. The use of sensitivity
analyses to “debug” the tree and determine the ro-
bustness of the conclusion is discussed in Part 4 of
this series.” For most of the recommendations we
show examples of "mistakes” and “correct” ways of
modeling the tree. We assume that the reader is fa-
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miliar with the usual methods of pictorial display of
decision trees.””

RECOMMENDATION 1

The tree must have balance. Real clinical prob-
lems represent tradeotfs between risks and benefits.
The structure of outcomes in a decision analysis
must reflect such a tradeoff. If one of the strategic
options in the model carries all of the risks and
none of the benefits, or, alternatively, all of the ben-
efits and none of the risks, then either the tree is
not a valid model of the clinical problem or the clin-
ical problem does not require a decision analysis.
Figure 1A shows an example of a model without bal-
ance.

Imagine that we are comparing two strategics: 1)
treating patients with a specific disease (e.g., GCA) to
avoid an adverse outcome (called a “bad outcome”;
in this case, blindness) and 2) not treating the pa-
tient. The structure of outcomes in both cases in-
cludes the possibility of the bad outcome or a good
outcome. This is represented after the first proba-
bility node in both the upper and the lower

Bad O

pBORx

Good Outcome

pGORx

Bad Outcome

Na Rx
Good Qutcome U0
pGO

FiGure 1A.  Decision tree without balance. FIGURE 1B.
pBORx = probability of bad outcome with treat- pSE

ment PNSE
PGORx = probability of good outcome with treat- UBORXSE

ment UGORXSE
pBO = probability of bad oulcome without UBQORx

treatment UGORx
pGO = probability of good outcome without

treatment
UBO = utility of bad outcome
UGO = utility of good outcome

The bad outcome is blindness. The good outcome
is no blindness.

—
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branches of figure 1A. The expression underneath
the line represents the probability of the occurrence
of that event. If the tree is modeled such that treated
patients have a smaller chance of a bad outcome
than untreated patients and if the treatment has no
down side (e.g., risk of a side effect, inconvenience
of compliance with medication), then this tree has
no balance. The upper branch clearly dominates the
lower branch because it contains all of the benefits
and none of the risks.

Figure 1B models the same clinical problem using
a tree with balance. First, the therapy arm is asso-
ciated with a new outcome, the possibility of a major
side effect from steroids, such as avascular necrosis
of bone. Second, the utilitics now reflect not only
good and bad outcomes but also the presence or
absence of a minor side effect such as fluid reten-
tion and a new term denoted “Rx,"” which implies
the nuisance factor for patients associated with un-
dergoing a therapy. Now each branch has advan-
tages and disadvantages, thereby precluding the de-
cision maker from identifying a strategy that is ideal
in all respects.

Bad Outcome
pBORX

BO, Rx, SE UBORXSE

Side Effect

Good Outcome
pGORX

GO. Rx, SE

UGORXSE

Bad Outcome

No Side Effect

Good Outlcome
PGORx

Bad Outcome

pBO

Good Outcome

pGO

Decision tree with balance.

probability of side effect

probability of no side effect

utility of bad outcome afler treatment and side effect
utility of good vutcome after treatment and side effect
utility of bad outcome after reatment

utility of good outcome after treatment

The side effect is the side effect of long-term steroid treatment (e.g., hyper-
tension, hyperglycemia, fluid retention, avascular necrosis).
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Death

pDie

Blindness
pBhininess

N4

7

Alive w/o Blindness

pAlve

A

Death

Blindness
pBlindnessr

B 4
FIGURE 2. A (above), chance node with three outcomes.
pDic = probability of dying
pBlindness = probability of blindness
pAlive = probability of being alive with blindness

B thelow), chance nodes with bwo outcomes.

# = complement probability (1 minus probability of
the upper branches)

pBlindness, = probability of blindness, condilional on being
alive

RECOMMENDATION 2

Only two branches after each chance node.
Figure 2A represents part of a decision tree reflect-
ing three possible patient outcomes: death, a mor-
bid event (blindness), and life without morbidity. In
the baseline analysis, the probability of death (pDIE)
is 5%, the probability of blindness (pBlind,} is 80%,
and the probability of being alive without morbidity
is 15%. Notice that the probabilities sum to 1. The
probability of the last branch after any chance node
is called the “complement” of the other branches,
implying that it is always numerically equal to 1 mi-
nus the sum of the other probabilities.

From a logical and structural point of view, there
is nothing wrong with the structure of outcomes as
shown in figure 24 so long as the three outcomes
are mutually exclusive and exhaustive (the probabil-
ities sum to 1.0). However, when one performs a
sensitivity analysis there will be difficulties. For ex-

MEDICAL DECISION MAKING

ample, if the probability of death is allowed to vary
between 0% and 40%, the computer will perform the
calculations between 0 and 20% only. At this point,
the probability of the “complement state’” (alive
without morbidity) is 0. Once the probability of
death exceeds 20%, the three probabilities would
sum to a number greater than 1, contrary to the
standard laws of probability.

Some software packages will plot the range be-
tween 0 and 20% and stop. This will not be a prob-
lem if the tree is simple and the analyst can remem-
ber that the maximum probability for some of these
variables is a value that makes the sum of all prob-
abilities for each branch equal o 1. However, if the
tree is complicated it becomes difficult to appreciate
all of these constraints in the sensitivity analyses.
Furthermore, the computer may impose some con-
straints that are not evident 1o the analyst in debug-
ging the tree. Thus, when logical inconsistencies
{such as probabilities exceeding 1) arise in sensitivity
analyses, it is much more difficult to detect bugs.

Figure 2B displays a method of expressing the
structure of outcomes shown in figure 2A while en-
suring that the sum of probabilities never exceeds
1. Doing so requires that each probability node be
followed by only two branches, with the probability
of one branch always expressed as a complement
(i.e., 1 minus the probability of the event) of the
other branch. Both SMLTREE and DECISION MAKER use
the symbol “#" as the complement expression and
calculate the lower probability in this manner. No-
tice that in figure 2B, pBlindness is not 80% because
it is a probability conditional upon the patient’s be-
ing alive. It therefore should be equal to 0.80/0.95,
where 0.80 is the unconditional probability of blind-
ness and 0.95 is the unconditional probability of be-
ing alive.

RECOMMENDATION 3

No embedded decision node. Figure 34 repre-
sents a two-step decision-analytic problem. Imagine
that you have a patient who has a given set of signs
and symptoms. You may wish to further test the pa-
lient, e.g., biopsy the temporal artery, before deter-
mining treatment {the upper branch). Alternatively,
you may choose to proceed without further testing
{the lower branch). If you decide not to test, you are
faced with a second decision: should you treat or
not treat the patient with a specific therapy (e.g.,
steroids). Thus, a second decision node is placed in
the lower branch. This sequence of reasoning is of-
ten natural to clinicians.

Once again, there is nothing illogical about this
presentation of a decision tree. However, embedded
decision nodes, such as the one shown in the lower

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VOL 17/NO 2, APR-JUN 1997

branch of figure 34, can lead to difficulties in inter-
preting the sensitivity analyses,

Figure 3C shows a sensitivity analysis that varies
the probability of the occurrence of the adverse
event without therapy and shows its effect on ex-
pected utility in each of the two branches. As is
shown in Recommendation 4, most decision models
should include a relationship between the probabil-
ity of an adverse event’'s occurring with therapy and
the probability of an adverse event’s occurring with-
out therapy. When the model is built with such a

Test+ —» Rx

Tesl :)

Test - —» Na Rx

RAx ALL

No Test ]

Rx None

Expected
Utility

"No Test

C

Ficure 3. A (top left), tree with embedded decision node.

B (top right), tree without embedded decision node.
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relationship, the expected utilities of both branches
decrease as that probability increases. Interpreting
figure 3C, however, is not straightforward. Where
the probability of an adverse event is very low, the
no-test strategy is best. Where the probability is in-
termediate, the test strategy is best, and then, once
again, as the probability gets even higher, the no-test
strategy is best. At first glance this appears counter-
intuitive, raising worries about an underlying bug.
Figure 3B shows the preferred way of modeling
this problem without an embedded decision node.

Rx ALL

Test+ —>» Rx

[ Test )

Test - —» No RAx

Rx None

Expected
Utility
A

C thottom lefl), one-way sensitivity analysis varying probability of bad outcome (pBO} with embedded dccision node.

D (bottom right), one-way scnsitivity analysis varying probability of bad outcome {pBO} without embedded decision node.
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The no-test strategy is divided into two strategies at
the square decision node. There are now three
strategies—treat everyone without testing, test and
treat only some patients, and treat no patients with-
out further testing. In turn, figure 3D resolves the
confusion of figure 3C, showing the relationships be-
tween the baseline probability of an adverse event
without therapy and the expected utilities for all
three branches. The revised display is easy to inter-
pret: at low probabilities the best strategy is to tcst
none and treat none and at the highest probabilities
the best strategy is to treat all without further testing.

Once again, interpreting sensitivity analyses for a
simple example with a single embedded decision
node will not be difficult for most students. How-
ever, a small increase in the number of nodes can
make interpretation exceedingly problematic. For
this reason, we suggest avoiding embedded decision
nodes and recommend that all combinations of de-
cisions be expressed as distinct therapeutic strate-
gies coming off the first decision node.

RECOMMENDATION 4

The branches must be ‘‘linked.”’ Figure 4A dis-
plays a classic TREAT aLL (labeled Rx All on the tree),
TEST AND TREAT sOME (labeled TEST on the tree), and
TREAT NONE (labeled Rx NoNE on the tree) decision
tree. Observe that the probabilities of good and bad
events in the three branches are expressed with dit-
ferent variables. For the Rx NONE group, the proba-
bility of a bad outcome is called pBO. In the Rx ALL
branch, it is called pBORx. The probability of bad
outcomes in the TEST branch also has two different
expressions, pBOT+ (the probability of a bad out-
come given both a positive biopsy and treatment)
and pBOT - (the probability of a bad outcome given
a negative biopsy and no treatment). Notice also that
the probability that a patient will have a "positive
test” le.g., vasculitis evident in the biopsy specimen)
is simply expressed as pT+.

Such a model is problematic, for two reasons:
First, sensitivity analyses will not yield logical resuits.
As pBO (fig. 4C) increases, for example, the expected
utility of the Rx NONE strategy falls, as expected. How-
ever, the expected utilities of the other two branches
remain the same. It is logically possible that the ex-
pected utility of the Rx ALL strategy would remain
constant in this circumstance if one simply modeled
the probabilities of bad outcomes under conditions
of treatment and no treatment as two separate dis-
tinct variables with no relationship between the two.
However, because there is a subgroup of patients in
the TEST strategy that do not undergo treatment,
there must clearly be a relationship between pBO
and pBOT—. As pBO increases, so too must pBOT—.
Therefore, as the expected utility of the Rx NONE

MEDICAL DECISION MAKING

strategy declines as pBO increases, so too must the
expected utility of the TEsT strategy decline as pBO
increases.

The second problem in the model shown in figure
4A relates to invalid probability expressions. Under
conditions of no treatment, the probabilities of ad-
verse outcomes in the three branches must be the
same. The difference between the Bx aLi. and Rx
NONE branches lies in the effectiveness of the ther-
apy. However, the middle TesT branch has some pa-
tients that are treated and some patients that are not
treated. Thus, the overall probability of adverse
evenlts in this branch must be a weighted average of
the probability of bad outcomes among those pa-
tients who have positive tests and the probability of
bad outcomes among those who have negative tests,
with weights determined by the probabilities of the
test outcomes for the patients. One further modifi-
cation in this weighted average is that some of the
paticnts are treated and therefore have a lower
probability of adverse outcomes.

Both problems typified by the model in figure 4A
can be remedied by linking probability expressions.
Linkage is the explicit relationship among probabil-
ities or utilities in the branches that ought to be re-
lated (e.g., the probabilities of a bad cutcome in the
Rx NoNE and Rx ALl branches). Linkage is achieved
by designing lor the two branches probability or
utility expressions that share common variables,
thereby allowing both expressions to vary simulta-
neously when performing a sensitivity analysis on
the common variable. Two particularly useful forms
of linkage relate to treatment effectiveness and dis-
easc probability (prevalence).

Linking the probabilities of outcomes by treatrment
effectiveness. The first linkage is to create a relation-
ship between the probability of a bad outcome with
treatment and the probability of a bad outcome
without treatment. Results from clinical trials fre-
quently express this relationship using the term "ef-
fectiveness,” which is the proportionate reduction in
the probability of an adverse outcome resulting
from treatment. Effectiveness, e, is therefore equal
to (pBO — pBORx)/pBO. By using that expression in
the Rx aLL branch, one has a linkage between the
Rx aLL and Rx nonE branches that will allow the ex-
pected utilities of both branches to fall as pBO rises,
as shown in figure 4D.

Linking the outcomes by test characteristics and
prevalence (or prognosis). The best way to handle
the problem of ensuring linkage between the TEsT
branch and the other two branches is to use Bayes-
ian expressions incorporating the sensitivity and
specificity of the test to reflect its accuracy. Figure
4B shows what those expressions are at each of the
probabilities. These can be derived from first prin-
ciples by examining table 1, which divides all pa-
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Bad Oulcome

Rx None

Good Qutcome

Bad Qutcome
pBOT.

_Test+ >»Rx
pT-

Good Quicome

[] Test é) g

Bad Outcome

est- -»No RAx

Good Qutcome

Side Effect

Bad Outcome

~BORx No Side Effect

Rx Al ;5 3

Side Etfect

Good Qutcome
H

No Side Effect

Expected
Uhility
A

Side Effect

No Side Effect

Side Effect

No Side Effect

Primer on Medical Decision Analysis—2 e 131

Bad Quicome

Rx None

Good Dutcome

Side Effect

Bad Qutcome

sens oBO 1-el-pT«

k Test + —»Rx

Good Quicome

No Side Etfect

ﬂ [Fe=—o :

Bad Outcome

ot sensioBO pT

ITest- -»No Rx

Good Qutcome

Side Etfect

Bad Outcome

No Side Effect

Rx All u

Side Effect
Good Qutcame

No Side Etfect

C

Expected
Utitity
A
Rx None
Rx All
pBO

FIGURE 4. A {top left), decision tree without linkages of probabilities.

pT+
pBOT+ =
pBOT— =

probability of positive test
probability of bad outcome if test positive (and patient treated)
probability of bad outcome if test negative (and paticnt not tecated)

The test in our example is temporal artery biopsy.

B (top right). decision tree with linkage of probabilities.

sens =
spec =
e =
pT+ =

* =

sensitivity of temporal artery biopsy
specificity of temporal artery biopsy
effectiveness of treatment

(sens X pBO) + {1 — spec) X (1 ~ pBO)
mu]tiplied by

C (hottom left), one-way sensitivity analysis where probabilites not linked.

D (bottorn right), one-way sensitivity analysis where probabilities are linked.
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Table 1 e Bayesian Algebra

Bad Outcome Bad Qutcome
Will Occur Will Not Occur
Test + sens X pBO (1 — spec) X (1 — pBO)
Test — (1 — sens) X pBO spec X (1 — pBO)
pBO (1 — pBO}
pT+ = (probability of positive test) = {(sens X pBO) + (1 —
spec) X (1 — pBO)]

pT— = (probability of negative test) = {(1 — sens) X pBO +

(spec) x (1 — pBO)]
sens = sensitivity of temporal artery biopsy
spec = specificity of temporal artery biopsy
pBO probability of bad outcome

3

Positive predictive value = (sens X pBQ) + pT+

Probability of BO if test negative = [(1 — sens) X pBO] + pT—

tients in a sample into four cells in a 2 X 2 table.
The essential feature is to obtain posttest probabili-
ties as a function of the baseline disease probability.

By examining the expressions in the four cells of
table 1, the reader can reconstruct the probabilities
shown in the TEsT branch of figure 4B. For example,
pT+, the probability for the upper branch following
the first chance node in the TEsT branch, is equal to
the sum of the probabilities shown in the upper row
of table 1 (also shown in the legend). For the follow-
ing chance node, labeled BAD ouTcoMmE, the proba-
bility equals the expression for positive predictive
value (see table 1 footnote), multiplied times (1 — e),
the proportionate reduction in the risk of a bad out-
come because the patient is treated. As an exercise,
our students are asked to recreate the expressions in
figure 4B from first principle using table 1.

RECOMMENDATION 5

The tree must have symmetry. Another feature
in the tree structure of figure 4B is "symmetry.”
Symmetry means that all underlying initial health
states that could affect outcomes are represented in
all branches. We believe that a tree must have sym-
metry among the branches to simplify interpretation
of sensitivity analyses. Thus, portions of the tree
structure are repeated in the various strategic
branches. The use of subtrees is one strategy that
ensures symmetry and reduces the risk of program-
ming errors. In figures 4A and 4B the structure of
outcomes for the Rx NONE group is repeated both in
the Rx ALL branch and in a portion of the TEsT
branch (for those patients who have negative tests).
Similarly, the structure of outcomes for the BRx aLL

MEDICAL DECISION MAKING

patients is repeated in the TEsT branch (for those
patients who have positive tests).

Those who use SMLTREE or DECISION MAKER will no-
tice that these software programs easily allow link-
age and symmetry. In the simplest case, linkage be-
tween branches can be achicved by programming
the probabilities (or utilities} as expressions contain-
ing common variables. A more complex method that
ensures both linkage and symmetry is to build a
subtree. A subtree is a part of the tree whose struc-
ture is repeated at more than one location in the
whole tree. For example, figure 4B contains two sub-
trees. The first is the structure of outcomes that fol-
lows the label Rx NONE that is repeated after a neg-
ative test result, the lower branch of the TesT
strategy. The second is the structure of outcomes
that follows Rx ALL that is repeated after a positive
test, the upper branch of the TesT strategy.

In sMLTREE the programmer uses the LiNnk com-
mand to repeatedly place that subtree in appropri-
ate places. The computer will copy the structure
every place the same branch name is used with the
LiNKk command. By doing so, however, the computer
will also copy identical probabilities and utilities for
all the branches distal to that point, and, as can be
seen in figure 4B, the probabilities for the branches
of the subtree in the TEsT branch are different from
those in the other two branches. To vary the subtree
probabilities and utilities for different parts of the
tree, the programmer can use temporary bindings
at a point to the left of the subtree that will alter
these variables from that point on for that branch
alone. Temporary bindings are statements placed at
various points in the tree that alter the values that
variables (i.e., probabilities and utilities) take on for
all distal points in the tree. They differ from global
bindings, which set the initial values for these vari-
ables for all points in the tree unless they are tem-
porarily bound.

For example, after copying the subtree following
Rx NONE at the top of figure 4B (bad or good out-
come) on to the lower branch of the TEsT strategy
representing a negative test {called T — No Rx in
figure 4B), one should temporarily bind the variable
pBO at the T— node to {1 — sens} X pBO + pT—.
This changes the value that pBO takes on for all
parts of the tree to the right of that temporary bind-
ing. In sMLTREE this is best done by creating a
branch called T—, making it a label node (a node
that is followed by only one outcome), and then fol-
lowing it with the subtree Rx NONE using the LINK
function. The temporary binding noted above is
then placed at T—. One can use temporary bindings
and subtrees throughout to incorporate the princi-
ples of both linkage (recommendation 4) and sym-
metry (recommendation 5).
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FIGURE 5. Reverse order of bad out-
come and test result,
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pBO
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RECOMMENDATION 6

Don’t worry about order. Many individuals
who are trying out decision analysis for the first time
worry about the order of the outcomes within the
structure of outcomes for cach branch. Should we
model the adverse events resulting from disease
le.g., blindness} before the side effects of therapy
le.g., avascular necrosis {rom steroids)? Should we
order the probability of discase before the test re-
sults or after them?

The answer to this question is: It doesn’'t malter.
The reason it doesn't matter is easy to understand,
in that the process of determining the expected util-
ity for cach branch is determined by folding back
the tree. Mathematically, this is equivalent to mul-
tiplying all of the probabilities along the branches
until one obtains the probability of being in each
state of the terminal nodes. One then uses these
products of probabilities as the weights to derive the
expected value, i.e., multiplying the product of prob-
abilities by each of the utilities and then summing
that over all outcomes for each branch. Once one
understands the folding-back process, sequence
does not matter because of transitivity, a X b = b
X a.

Figure 5 shows a variation of figure 4B that flips
the order of the test results and the outcomes. In
figure 4B the test results are modeled before the
adverse outcomes. In figure 5 the underlying prob-
ability of a bad outcome for the patient is modeled
first, and once again one relies on table 1 to derive
the probability that patients will have a bad out-
come, namely the sum of the upper left and lower
left boxes of table 1. In figure 5 the effectivencss fac-

Test - —» No Rx

]

tor and side-effect risk are included only for patients
who are treated, i.e., thosc who have positive tests.

it is sometimes very useful to model trees showing
the underlying distribution of disease or adverse
events, as shown in figure 5, by placing that proba-
bility as the first chance node. This process will en-
sure that the underlying distribution of disease or
adverse events (bad oulcomes) is the same in the
three branches, which must be true in order to
make the tree behave correctly when doing sensiliv-
ity analyses. In implementing this process, we have
found that beginners in decision analysis had diffi-
culty accepting these trces because, as they state,
"But you don't know whether the patient docs or
does not have the disease before you do the test.”
Recommendation 5 helps them understand that the
order does not matter and therefore they need
worrty about not what the clinician actually knows,
but rather how the tree will operate in terms of
keeping the distribution of patients constant in the
three branches. In fact, for individual patients, you
don't know whether they have the disease, but you
do know the probabilily distribution. Nevertheless,
the layouts of trees may have an impact on those
who read papers about decision analysis, and this
should be kept in mind when presenting such ma-
terial to clinicians, who may not understand that or-
der doesn’t matler.

Giant Cell Arteritis—Example

As mentioned above, in this series of papers, we
use a common example of management strategies
for patients with suspected giant cell arteritis. Figure
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Steroid

FIGURE 6. Strategies for patients with
poral (giant cell) arteritis.
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MEDICAL DECISION MAKING

6 displays the tree that we use for the example. It is
a modified version of the tree used by Buchbinder
and Detsky." We have simplified the tree somewhat
for the purposes of this series in order to illustrate
principles of decision analysis.

The reader will notice that the tree follows all of
the six recommendations listed above and is a var-
iation on the three common strategic choices Rx
NONE, Rx ALL, and TEST and treat some. The top
branch displays the common structure of the pa-
tient’s developing a complication of giant cell arter-
itis or not without treatiment. This structure is re-
peated as a subtree throughout the tree with
variations in the complication rate occurring de-
pending on the biopsy test result and whether or
not the patient received treatment. In the bottom or
Rx ALL branch, the possibility of a steroid compli-
cation is introduced, with the offsetting benefit of a
reduced risk of a complication of giant cell arteritis
because of steroid treatment. The middle or BioPsY
branch divides the patients into those with positive
and negative biopsy results. Bayesian algebra is used
as in the generic example shown in figure 4 to divide
the patients into groups at higher and lower risk for
developing complications of giant cell arteritis.
Those whose biopsy results are positive are treated,
thereby reducing the risk of complications but ex-
posing the patients to the complications of steroid
use. The probabilities throughout the tree are de-
scribed in the legend; the utilities are simply num-
bered for further discussion in Part 3° of this series.
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Glossary

Debugging: A process whereby the analyst performs a series of
sensitivity analyses with the programmed model in order to
determine where errors exist.

Bugs: A term for an error in the tree.

Robust: An analysis is robust if the qualitative conclusion le.g.,
that therapy A is better than therapy B) is insensitive to the
uncertainties in the analysis such as quantitative estimates of
probabilities or utilities.

Embedded decision nodes: Decision nodes that appear any-
where within the tree except at the leftmost position of the
trec. i

Linkage: The explicit relationship(s) (by the use of algebraic ex-
pressions) among probabilities or utilities in the various
branches of the tree that ought to be related (e.g., the proba-
bilities of a bad outcome with and without treatment).

Symmeitry: All underlying health states that could affect out-
comes are represented in all branches of the tree. Symmetry
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is achieved by repeating the structures of portions in the var-
ious branches via the use of subtrees.

Subtree: A portion of the model that is repeated in various
places throughout the tree. The programmer can use the
“LINK" function to copy subtrees at various locations.

Global values: This expression is relaled to smLTREE and DECI-
510N MAKER and refers to the quantitative estimates for all var-
iables found in the variable list. These values are then applied
throughout the tree at all times except where temporary bind-
ings override them.

Temporary bindings: Reassigned values of guantitative esti-
mates for specific variables that override the global bindings
at various points throughout the tree. This function is partic-
ularly useful when subtrees are placed throughout the tree
but quantitative estimates of the variables must differ at the
various locations.

Label node: A node that has only one node following it occur-
ring with 100% probability. This is a useful technique for com-
bining subtrees with temporary bindings as it is a good place
for the temporary bindings.
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