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This paper describes how to estimate probabilities and outcome values for decision
trees. Probabilities are usually derived from published studies, but occasionally are
derived from existing databases, primary data collection, or expert judgment. Qutcome
values represent quantitative estimates of the desirability of the outcome states, and
are often expressed as utility values between 0 and 1. Utility values for different heaith
states can be derived from the published literature, from direct measurement in ap-
propriate subjects, or from expert opinion. Methods for assigning utilities to complex
outcome states are described, and the concept of quality-adjusted life years is intro-
duced. Key words: decision analysis; expected value; utility; sensitivity analysis; de-

cision trees; probability. (Med Decis Making 1997;17:136—-141)

Probabilities and outcome values are two of the ba-
sic elements of a decision analysis. A probability is
a quantitative estimate of the likelihood that a given
outcome depicted in the tree will occur. An outcome
value is a quantitative expression of the desirability
of such an outcome. The validity of a decision anal-
ysis depends on the accuracy of these numerical es-
timates. This paper reviews some practical ap-
proaches for estimating probabilities and outcome
values.

Estimating Probabilities

The goal of estimating probabilities for a decision
tree is to find the most accurate estimate for the
probability of each event in the model. The best es-
timate for each probability value is called the ‘‘base-
line” estimate. The analysis that uses the best esti-
mates of the probabilities is called a ‘“‘baseline”
analysis. Since there is usually some uncertainty
about the best estimate for each probability, the
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range of reasonable estimates should be specified.
This range may reflect the variety of estimates from
different studies or may be based on the 95% con-
fidence interval from a single study. The less confi-
dence you have in the numerical estimate of a prob-
ability value, the wider the range should be. The
range of values for each probability can be used in
a sensitivity analysis to assess how different numer-
ical estimates can affect the overall result of the de-
cision analysis (see Part 4 of this series).’

In order to estimate probabilities, the best avail-
able information should be sought*™* You should
start with a systematic search of the literature,
which generally involves the following steps: a com-
puterized literature search, a search of personal
files and the files of content experts, and a review
of reference lists from retrieved articles.*** Once
published studies have becn identified, the next step
is to evaluate the validity of their results by applying
critical appraisal criteria.” When the quality of a
study is poor, you cannot have much confidence in
any probability estimate derived from it. Even when
high-quality published studies exist, the results of
the studies may not apply to your model if the study
population or the tireaiment intervention differs
from that in the model. Additionally, if the study as-
sesses the treatment under optimal circumstances
of adherence and follow-up, the results may over-
estimate the effectiveness that you may expect in
your population.”

After completing a systematic search of the liter-
ature, you will usually have several relevant pub-
lished papers. If a single study stands out as being
exemplary in methodologic quality and relevance to
your analysis, use its results for your probability es-
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timates. If several relevant studies exist, eliminate
studies that are of poor methodologic quality, and
then use an average of the results from the remain-
ing studies to estimate the probability values. You
may be lucky enough to find a published meta-anal-
ysis, which averages the results of several studies,
taking into account factors such as study size and
study quality.*® Once you have obtained your prob-
ability estimates, a useful way to display them is in
a table that contains the baseline estimate for each
probability, the range of values considered reason-
able, and the reference sources used (see table 1).°

As an example of how to derive probability esti-
mates from the literature, let us once again consider
the giant cell arteritis (GCA) decision tree shown in
Part 2 of this series.” The key probability estimates
for this tree are: the probability of an adverse out-
come from GCA, the sensitivity and specificity of a
temporal artery biopsy in diagnosing GCA, the ef-
fectiveness of prednisone in reducing the risk of an
adverse outcome from GCA, and the probability of
a serious side effect from prednisone.'’

The major adverse outcome from GCA is perma-
nent blindness. A systematic review of the literature
for studies to estimate the probability of permanent
blindness and the effectiveness of prednisone in
preventing this complication revealed several obser-
vational studies, but no randomized trial. Three
studies were found that identified cases of GCA with
normal vision at the time of diagnosis and assessed
the development of blindness in patients treated
with prednisone and in patients given no treatment
(i.e., historical controls)." We calculated the average
for the three studies, and obtained probabilities of
blindness of 0.120 without prednisone and 0.013
with prednisone. The baseline estimate of the ef-
fectiveness of prednisone in preventing this compli-
cation was then calculated by using the formula out-
lined in Part 2 of the series”

{(0.120 — 0.013) +~ 0.120] = 0.89

The lowest and highest estimates from the three
studies were then used to establish the plausible
range for effectiveness. Similar techniques were
used to find baseline estimatcs and ranges for the
sensitivity and specificity of temporal artery biopsy,
and for the probability of a major complication of
prednisone use (see table 1).”°

In some circumstances, you may create a decision
tree and discover that there are only one or two very
small, poor-quality published studies, or no pub-
lished studies, on which to base your probability es-
timates. In such situations, you will need to use al-
ternative sources of information such as expert
judgment, existing databases, and primary data
collection.®™* We recommend that you begin with
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Table 1 e Example of Probability Table

Probability*
Variable Baseline Range
Probability of major complication of gi-
ant cell aneritis_ 0.12 0.05-0.40
Temporal artery biopsy
Sensitivity 0.80 0.58-0.97
Specificity 1.00 0.90-1.00
Effectiveness of prednisone 0.89 0.69-1.00
Probability of major complication of
prednisone use 0.19 0.05-0.40

*Baseline probabilities are the averages of estimates from published
studies; ranges are based on the highest and lowest estimates from
published studies. The specific references for the probability estimates
can be tound in Buchbinder and Detsky.™

expert judgment and/or existing databases to make
initial probability estimates. Since these estimates
are subject to bias,"'"** a wide range of possible val-
ues should be considered in a sensitivity analysis. If
the results of your decision model prove to be sen-
sitive to a probability value derived in this way, the
answer to the decision problem will remain uncer-
tain until further information is derived from pri-
mary data collection.

Estimating Outcome Values

The final component involved in constructing a
decision model is to assign a gquantitative value to
the outcome at the end of each branch of the tree.
Outcome values can be expressed in several ways:
life years, quality-adjusted life years {QALYs), cases
of disease or complications prevented, or utilities.
The simplest type of decision model is that that has
only two possible outcomes (e.g., alive or dead, dis-
ease or no disease, complication or no complica-
tion). In such circumstances, a common convention
is to assign the value 1 to the better outcome and
the value 0 to the worse outcome.® When this con-
vention is applied, the outcome value for each treat-
ment option will represent the overall probability
that the better outcome will occur if this treatment
option is chosen. Assigning outcome values is usu-
ally more complicated because most decision prob-
lems have more than two possible outcomes.

A "utility” is a measure of a decision maker's rel-
ative preference for an outcome, and is expressed
as a single value between 0 and 1. Utilities for out-
comes are usually assessed relative to two extremes,
referred to as "‘anchor states.” The commonly used
anchor states are "death,” assigned a value of 0, and
“full health,” assigned a value of 1. Utility measures
provide summary scores that aggregate the positive
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Table 2 e Outcomes for Decision Options in the
Management of Giant Cell Arteritis (GCA)

Treat all

No GCA, prednisone treatment

No GCA, prednisone treatment, major prednisone complica-
tion

GCA, prednisons treatment

GCA, prednisone treatment, major prednisone complication

GCA, prednisone treatment, major GCA complication

GCA, prednisone treatment, major prednisone complication,
major GCA complication

Treat none
No GCA
GCA
GCA, major GCA complication

Biopsy and treat positives

Biopsy positive

No GCA, prednisone treatment, TA* biopsy

No GCA, prednisone treatment, major prednisone compli-
cation, TA biopsy

GCA, prednisone treatment, TA biopsy

GCA, prednisone treatment, major prednisone complica-
tion, TA biopsy

GCA, prednisone treatment, major GCA complication, TA
biopsy

GCA, prednisone treatment, major prednisone complica-
tion, major GCA complication, TA biopsy

Biopsy negative
No GCA, TA biopsy
GCA, TA biopsy
GCA, major GCA complication, TA biopsy

*TA = temporal artery.

and negative aspects of quality of life, and can in-
corporate attitudes towards risk and length of life."

Utilities can be used as the actual outcome values
in your decision tree, or they can be used as weights
to calculate quality-adjusted life expectancy. A sim-
ple, and widely accepted, approach to estimating
quality-adjusted life expectancy is to multiply the
length of life in a health state by the utility of the
health state."” For example, if an individual lives 10
years in full health (utility = 1.0) and 10 years with
a severe disabling stroke (utility = 0.5), the quality-
adjusted survival would be:

[(10 X 1.0) + (10 X 0.5)] = 15 QALYs

Utilities can be estimated in many ways: 1) arbi-
trarily assign values based on your judgment; 2) have
a group of experts reach a consensus on the esi-
mates for the utility values; 3) search for relevant,
published utility values in the literature; or 4) mea-
sure the values directly in appropriate subjects, us-
ing reliable and valid methods." Because of the sig-
nificant amount of work involved in collecting utility
measurements from a group of subjects, we gener-
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ally recommend beginning with utility estimates
from the literature, or from the judgment of experts.
Given the inaccuracies associated with these meth-
ods, a wide range of possible values should be con-
sidered for each utility estimate, allowing for exten-
sive sensitivity analyses.” You can then consider
directly measuring utilities for those health states
that have major impacts on the results of the anal-
ysis.

There are several publications that describe the
utilities of a wide range of health states,” ' and if
you are very fortunate, the utility values required for
your decision tree may already have been measured.
The principles described earlier about using pub-
lished studies to estimate probability values apply
equally to using published studies to estimate utility
values. You should search the literature in a system-
atic fashion, you should assess the validity of the
published utility estimates by applying critical ap-
praisal criteria to judge the study quality, and you
should ensure that the published utilities are appli-
cable to your decision model **"

For the GCA decision tree, there are several pos-
sible outcomes for each decision option (see table
2). The outcomes include various combinations of
the following health states: symptoms of GCA, per-
manent blindness as a major complication of GCA,
the negative impact on quality of life associated with
taking daily prednisone tablets, a major complica-
tion from prednisone treatment, and the negative
impact on quality of life associated with undergoing
a temporal artery biopsy. Unfortunately, our search
of the literature yielded no relevant data on which
we could base utility estimates, so we had to derive
our own utility estimates.

When outcomes consist of combinations of differ-
ent health states, the utility of an outcome can be
assessed as a whole, or in parts. For example, as-
sessing the utility of the entire combination of hav-
ing GCA, undergoing a temporal artery biopsy, being
on prednisone treatment, and experiencing a major
GCA complication and a major complication of
prednisone therapy represents a utility assessment
of the whole outcome. Alternatively, the utility of this
outcome could be assessed by individually assessing
the utility of undergoing a temporal artery biopsy,
the utility of being on prednisone therapy, the utility
of a major GCA complication, and the utility of a
major prednisone complication, and then combin-
ing these utilities in some way. These two ap-
proaches are known as the "holistic” method and
the “decomposed”’ method, respectively.” In gen-
eral, we suggest that if the outcomes of the decision
tree are simple and easily ranked from most to least
preferred, the holistic approach should be used. If
the outcomes consist of combinations of several dif-
ferent health states, as in the GCA tree, or if they are
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difficult to rank with respect to utility values, the
decomposed method should be used.

For the decomposed approach, we recommend
dividing the health states into short-term and long-
term states. Short-term states are those that have
impacts on quality of life for defined, short periods
of time (e.g., days to weeks). Examples include tem-
porary hospitalizations and unpleasant diagnostic
procedures. Long-term slates are those that have
enduring impacts on quality of life, such as chronic
symptoms from a disease, the negative impact on
quality of life related to persistently being on a med-
ication, and major complications from disease or
from treatments that have lasting sequelae. Once the
health states have been separated into short-term
and long-term states, assign them utility values rel-
ative to the anchors of full health (utility = 1) and
death (utility = 0). As with probability estimates, a
useful way to display utility data is in a table that
contains the baseline estimates, the range of plau-
sible values, and the reference sources (when pub-
lished articles are used).

In the GCA example, there are five long-term
states, which are assumed to persist for the entire
time horizon of the analysis: no GCA, GCA symp-
toms, major GCA complication, prednisone treal-
ment, and major prednisone complication (see table
3). The GCA example has only one short-term state:
temporal artery biopsy. We used the consensus of a
group of physicians to estimate the utility values. Be-
cause prednisone therapy essentially eliminates all
the symptoms of GCA, the utility of having GCA
symptoms on prednisone therapy was assumed to
be equal to the utility of having no GCA symptoms
(i.e., utility = 1). However, patients on prednisone
therapy are considered to have a negative impact on
their quality of life associated with the prednisone
treatment itself (i.e., the utility of prednisone treat-
ment).

The next step in the decomposed strategy involves
aggregating the separate utilities. There are several
ways in which the utilities for decomposed states
can be combined to yield an overall utility value for
the entire outcome state, including adding the utility
values of the different states, multiplying the utility
values of the different states, or adding the utility
values of some states and multiplying others. Using
any of these aggregation methods entails certain as-
sumplions about the independence and interactions
of the different dimensions being combined.” Utlti-
mately, the only way to establish the accuracy of
your combined utility values is to empirically verify
your methods, which is a task that is generally be-
yond the capabilities of the neophyte analyst.

The aggregation scheme that we recommend re-
quires that you convert the utility values of your
short-term states into ‘'disutility” values. The “dis-
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Table 3 e Utility Estimates for Giant Cell Arteritis (GCA)
Decomposed Health States

Baseline
Health State Utility* Range*

No GCA 1.00

GCA symptoms 0.85 0.70-0.95
Major GCA complication 0.60 0.20-0.85
Prednisone treatment 0.97 0.90-1.00
Major prednisone complication 0.75 0.60-0.90
Temporal artery biopsy 0.995 0.97-1.00

*Baseline utilities and ranges are based on consensus estimates of
a group of expert physicians.

utility’” value of a health state represents the negative
impact on quality of life associated with the state.
The equation for calculating the disutility value of a
health state is very simple:

Disutility value = 1.0 — utility value

Next, you should multiply the utility valuss of all
the long-term states together. Finally, subtract the
disutility values for the short-term states from the
product of the utilities of the long-term states. This
aggregation scheme will yield a utility value for each
outcome state depicted in your decision tree.

For example, consider the "biopsy and treat pos-
itives” strategy. The utility for the outcome state *'bi-
opsy-proven GCA, on prednisone treatment, with a
major prednisone complication and with a major
GCA complication’’ is represented in the decision
tree terminal node by the following formula:

[utility of GCA symptoms on prednisone therapy
X utility of taking prcdnisone therapy daily X
utility of a major prednisone complication X
utility of a major GCA complication] — [1.0 —
utility of undergoing a temporat artery biopsyl
= [1.0 X 0.97 X 0.75 X 0.60} — [1.0 — 0.995) =
0.432.

Table 4 displays the utility estimates for all the out-
come states for the GCA example using the baseline
utility values for the decomposed health states,
which are shown in table 3.

Once you have derived your utility estimates for
all the outcome states, you should assess the rank
order of the utility values to see if the ranking of
outcome states meets the minimal requirement of
making sense (see table 4). This task is often referred
to as an assessment of “face validity,” and simply
means that you check to make sure that outcomes
that are clearly worse than others don’t have higher
utility estimates. If the utility estimates for your out-
come states fail 10 meet this relatively crude mea-
sure of validity, either you have made a mistake in
estimating the utilities of the decomposed states or
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Table 4 e Rank Ordering of Giant Cell Arteritis (GCA)
Outcome Values

Outcome State Utility*  QALYst
No GCA, no prednisone, no TAf biopsy 1.000 13.600
No GCA, no prednisone, TA biopsy 0.995 13.595
No GCA, prednisone 0.970 13.192
GCA, prednisone§ 0.970 13.192
No GCA, prednisone, TA biopsy 0.965 13.187
GCA, prednisone, TA biopsy 0.965 13.187
GCA, no prednisone 0.850 11.560
GCA, no prednisone, TA biopsy 0.845 11.556
No GCA, prednisone, major prednisone
complication 0.728 9.884
GCA, prednisone, major prednisone com-
plication 0.728 9.894
No GCA, prednisone, major prednisone
complication, TA biopsy 0.723 9.890
GCA, prednisone, major prednisone com-
plication, TA biopsy 0.723 9.890
GCA, prednisone, major GCA complica-
tion 0.582 7.915
GCA, prednisone, major GCA complica-
tion, TA biopsy 0.577 7.912
GCA, no predinsone, major GCA compli-
cation 0.510 6.936
GCA, no prednisone, major GCA compli-
cation, TA biopsy 0.505 6.933
GCA, prednisone, major prednisone and
GCA complications 0.437 5.936
GCA, prednisone, major prednisone and
GCA complications, TA biopsy 0.432 5.934

*Utilities are calculated by multiplying the baseline utilities of the long-
term states and then, when applicable, subtracting the disutility (i.e.,
1 - utility) value for temporal artery biopsy.

+QALYs = quality-adjusted life years are calculated by, when appli-
cable, subtracting the time period of negative impact of temporal artery
biopsy from the life expectancy and then multiplying the difference by
the product of the baseline utilities of the long-term states.

+TA = temparal artery.

§ The utility of No GCA, prednisone equals that of GCA, prednisone,
since we assume that prednisone completely eliminates GCA symptoms.

this method of aggregating utilities is not appropri-
ate for the given decision tree. Even if face validity
is achieved, caution is required, since the aggrega-
tion method is arbitrary and may misrepresent the
complexity of interactions between health states.

As an alternative approach, you could express the
outcome values for the GCA example in terms of
guality-adjusted life expectancy (QALE). To simplify
this example, we assume that GCA and its treatment
have no direct effect on life expectancy (LE), so that
LE estimates can be derived directly from published
life 1ables for the gencral population. Other sources
describe how to adjust LE for the presence of one
or more diseases that have impacts on LE.*'"**

For the purpose of estimating QALE, we recom-
mend that you represent the negative impacts on
quality of life of short-term states by assigning values
in units of time roughly equivalent to the periods of
time that the states have negative impacts on the
individual. For example, a consensus group of ex-
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perts estimated that temporal artery biopsy has a
negative impact on patients for two days, or 0.005
years. The time periods of negative impacts on qual-
ity of life associated with short-term states are then
subtracted from the LE. The implicit, conservative
assumption associated with this method is that the
quality of life is zero during the period of time ex-
perienced in the shorl-term state.

Once the short-term states have been dealt with,
you should aggregate the utilities of the long-term
states by multiplying them together. The product of
the utilities of the long-term states should then be
multiplied by the difference of the LE and the time
periods of negative impacts on quality of life asso-
ciated with short-term states. This will give you the
overall QALE for each outcome state.

For example, the QALE for the outcome state “'bi-
opsy-proven GCA, on prednisone treatment, with a
major prednisone complication and with a major
GCA complication’ in a cohort of 70-ycar-olds, with
a LE of 13.6 years,” is represented by the following
formula:

[utility of GCA symptoms on prednisone therapy
X utility of taking prednisone therapy daily X
utility of a major prednisone complication X
utility of a major GCA complication] X [LE —
time period of negative impact from temporal
artery biopsyl = [1.0 X 0.97 X 0.75 X 0.60] X
[13.6 years — 0.005 years] = 5.934 QALYs.

The most ambitious approach to estimating utility
values for your decision tree is direct measurement,
and this approach is often reserved for utility vari-
ables that have major impacts on the results of the
analysis. Measuring utility values involves the follow-
ing steps: developing health-state descriptions,
choosing the subjects, and choosing the method of
measurement."'” A detailed explanation of how lo
develop health-state descriptions and measure util-
ities is beyond the scope of this primer; we refer you
to several reviews for more information. "' '%2-
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Glossary

Baseline analysis: An analysis that uses the best estimate for
cach variable in the model.

Holistic method: A method to derive the utility of the outcome
of a branch in the decision tree. The utility of the outcome is
assessed as a whole, even if the outcome consists of a com-
bination of different health states.

Decomposed method: A method to derive the utility of the
outcome of a branch in the decision tree, when the outcome
consists of a combination of different health states. The utility
of each hcalth state is assessed independently, and then these
utilities are combined into a single value.

Disutility: The disutility of a health state represents the negalive
impact on quality of life associated with the state. The disutility
value is calculated by the equation 1.0 — utility value.”
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This paper is the fourth of a five-part series that describes the principles of construction
and evaluation of valid decision models. In this review, the authors describe the key
principles of detecting and eliminating structural and programming errors in decision

trees (debugging). In addition, they offer guidelines to facilitate the interpretation of
analytic results of decision models. Key words: decision analysis; expected value; util-
ity; sensitivity analysis; decision trees; probability. (Med Decis Making 1997,17:142—

151)

The first three parts of this series' ™ offer practical
guidance in building a model that is structurally
valid and clinically sensible, and obtaining the best
available probabilities and utilities for the model.
This paper is about the next step: evaluating the
model and interpreting the results. “'Folding back,”
or analyzing the tree (described in detail in intro-
ductory texts™®) will give us the expected value for
each strategy modeled in the tree, and should tell
us which is the preferred strategy.

Sensitivity Analysis

Before the results of folding back the tree can be
interpreted, though, an intermediate step is re-
quired: sensitivity analysis. Sensitivity analysis is the
process of repeatedly folding back the tree using dif-
ferent values for probability and utility variables.
There are two main reasons to perform sensitivity
analysis. First, it is one of the most useful methods
of "debugging,” or correcting errors within decision
trees. Second, sensitivity analysis is the decision an-
alyst’s version of statistical hypothesis testing; that is,
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it is the primary way decision analysts assess the
degree of uncertainty associated with an analytic re-
sult. We discuss these two uses in order.

Debugging the Tree

We use the term "bug" to describe both structural
errors {failure to follow the six recommendations set
forth in Part 2 of this series®) and technical or pro-
gramming errors that result in the tree formalism
incorrectly reflecting the ideas of the modeler. As a
great decision-analytic guru and mystic likes to say,
“All trees have bugs.”” This often includes trees that
have already been debugged, and it particularly in-
cludes the trees of neophytes. Religiously following
the principles of sound tree construction will usu-
ally result in fewer bugs, but bugs may remain de-
spite your best efforts. Sensitivity analysis is the main
tool we use to ferret them out.

We suggest that the process of debugging should
start with changing one variable at a time (one-way
sensitivity analysis) over its entire range, not just its
plausible range. If you have followed the rule of hav-
ing only two branches after each chance node, it
should be possible to evaluate the model for all
probability values between the range of 0 and 1. We
also suggest, for the purpose of debugging, that you
run the model for all utility and disutility values be-
tween the ranges of 0 and 1, even though this may
occasionally give paradoxical results such as a "‘neg-
ative”' expected utility.

For the purpose of debugging, we find it easiest
to ignore the specific expected utility values gener-
ated by the computer and simply evaluate the results
graphically. What will undoubtedly occur when one
starts to “‘debug” is that some of the sensitivity anal-
yses will not “make sense,” i.e., they will not cor-
respond to our predictions of what should be hap-
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Table 1 e Summary of Debugging Tips

1. Perform one-way sensitivity analyses on all variables over
their entire ranges (usually 0-1)

2. Evaluate results graphically

3. Evaluate slopes and rank order of strategies at extreme val-
ues

4. Do a risk analysis

5. Perform pairwise comparisons of strategies, after changing
key variables to give identical expected results

6. Develop consistent nomenclature habits (e.g., start probabil-
ity, utility, and Markov-state names with the same upper- or
lower-case letter)

7. Delete archaic variables and nodes

pening as variables change. When this happens, you
have either a new insight or a bug. If you've just built
the tree, it's likely to be a bug.

Bugs come in many phyla and species. Providing
an exhaustive phylogeny and ontogeny is possible
but of doubtful practical value, since there are in-
numerable ways of building trees wrong and only a
few ways of doing it right. Learning how to find
bugs, though, is an immeasurably useful skill. The
following section illustrates, with examples, the
method we've found useful for tracking them down.
The giant cell arteritis decision tree we've been us-
ing as an example is shown correctly programmed
in smurree (Hollenberg JP, Roslyn, NY) or DECISION
MAKER (DECISION MAKER, Pratt Medical Group, Boston,
MA) format in the appendix. To follow the argument
in the next section, you will have to periodically refer
to the appendix. Also, notice that the bugs referred
to below have been "fixed” in the tree shown in the
appendix.

In figure 1, panels A and B illustrate one-way sen-
sitivity analyses for the giant cell arteritis decision
tree we've been using as an example. What's wrong
with these figures? If the answer is not obvious, we
suggest two strategies for sorting this out: 1) evaluate
the slopes of the various strategies, and 2) evaluate
the rank order of the strategies at extreme values
(usually 0 and 1). 84ll unsure about what's wrong?

Figure 1A shows that the Rx NONE strategy is un-
affected by the probability of prednisone complica-
tions (slope = 0). This makes sense, since no one is
getting prednisone in this strategy. The Rx ALL strat-
egy looks less attractive (negative slope) as the prob-
ability of complications rises, as we expect, since
everyone gets prednisone in this strategy. When we
examine the siopsy strategy, though, it's clear that
something is wrong. The slope appears to be the
same as that of the Rx ALL strategy. This suggests
that the probability of prednisone complications is
affecting net results just as much in the BioPsY arm
(where 40% of the cohort is getting prednisone) as
in the strategy where everyone is treated. That's
clearly not right.

MEDICAL DECISION MAKING

The rank ordering of strategies at probability = 0
is plausible: Rx aLl.. > BlOPSY > Rx NONE. Treating
everyone seems like the optimal choice if there are
no treatment complications and the test is imper-
fect. Treating no one seems like the least atiractive
option. If the probability of incurring a treatment
complication is high (probability = 1), less aggres-
sive strategies should be preferred. It is impossible
to predict rank order with certainty here, but one
might expect that the piopsy strategy at some point
would be preferred to the Rx aLL strategy. More than
twice as many individuals are treated with predni-
sone in the Rx ALL strategy, prednisone complica-
tions are not trivial (utility = 0.75), and treatment
itself decreases quality of life (utility = 0.97).

So, analysis of the slope and, to a lesser extent, the
rank order suggests that the expected utility of the
BIOPSY strategy is too low at higher probabilities of
prednisone complications. The Y1 intercept (the Y
axis intercept on the left side of the graph) may be
correct, but the slope is 100 negative and the Y2 in-
tercept (the Y axis intercept on the right side of the
graph) is probably too low.

In figure 1B, the Rx ALL and Rx NONE strategies
again behave as predicted. We expect the expected
utility to be unaffected by the utility of prednisone
complications in the Rx NONE strategy, and to be
greatly affected in the Rx ALL strategy. Again, the line
has the same slope as that of the Rx ALL strategy,
suggesting that the complications of prednisone af-
fect the analytic result as much in the BiOPSY as in
the Rx aLL strategy. For some reason, individuals in
the biopsy arm are being disproportionately penal-
ized for treatment. At utility = 1.0, the rank order is
plausible, but at utility = 0, one would expect the
BIOPsY strategy to look better relative to the Rx ALL
strategy.

Both sensitivity analyses suggest that there's a bug
in the BiOPsy branch, and that it has something to
do with the way prednisone complications are ex-
pressed. As it happens, the tree builder failed to ex-
press the fact that individuals who are biopsy-neg-
ative will not get prednisone complications. More
specifically, the temporary binding prPrREDCmIp: =0 is
missing at the "Bx_Neg"” branch of the Biopsy stral-
egy. Correcting this oversight vields the results ex-
pressed in figures 1C and 1D, which show, as we
predicted, that the Biopsy strategy has a slope inter-
mediate between the slopes of the other two. The
rank orderings in both figures also behave as pre-
dicted.

We'll try one more example. Look at figure 2A.
The slope of the siorsy branch is negative. That
seems right, since the attractiveness of this strategy
should decrease as having a biopsy becomes worse.
However, no one gets biopsied in either of the other
two arms, so both lines should be horizontal. Yet
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the Rx ALL strategy also becomes less attractive as
having a biopsy becomes worse. For some reason,
individuals in the Rx ALL strategy are being incor-
rectly penalized for having a biopsy.

The rank order of the strategies looks right for low
disutilities: Biopsy is preferred to Rx ALL, which is
preferred to Rx NONE. Since 'the baseline value for
this disutility is very low (0.005), we expect the rank
order at or around a value of zero to be the same
as that observed in the baseline analysis. However,
the rank order at the Y2 intercept is clearly wrong.
B1oPsY should be the worst (because no one is biop-
sied in the other branches), whereas the rank order
of the other two strategies should the same as it is
at disutility = 0, i.e.,, Rx aLL should be preferred to
Rx NONE, the reverse of what is seen in figure 2A.

Again, the sensitivity analysis not only shows us
that there is a bug, but also tells us something about
where the bug is. The bug has something to do with
how the disutility of biopsy is evaluated in the Rx ALL
arm. We can even be more specific: we know that
the variable expressing disutility of biopsy appears
in sUBTREE1, which is the same in all branches. So,
there must be something wrong about the way the
disutility of biopsy is expressed that is not in sus-
TREE1 (otherwise, all strategies would be affected),
but is in the Rx aLL sirategy. That doesn't leave
much: the only thing that happens to the disutility
of biopsy that’s not in the subtree is in the local
bindings. The binding at the Rx aLL branch, assign-
ing a local value of disutility of biopsy of 0, appears
at first glance to be correct, but on more careful
inspection, the variable is ''duBX"” rather than
"duBx.” If you still can't see the difference, notice
that one "x” in "duBx” is capitalized, whereas the
other is not. An expression for the disutility of biopsy
(duBX) was created during tree construction, never
deleted, and incorrectly used in the temporary bind-
ing. Thus, "duBX” does not have a local value of 0,
as it should, but rather assumes its baseline, un-
modified value (0.005). Thus, sensitivity analysis on
duBx affects both the Rx aLL and the BlOPsy strate-
gies. Correcting this error leads to figure 2B. Here,
the slopes of both Rx ALL and Rx NONE are horizon-
tal, and the rank order at the exiremes appears to
be correct.

Let’s assume now that you've run all your one-
way sensitivity analyses, and thal the slopes and in-
tercepts are behaving as predicted. As a final check
to ensure you've programmed the tree correctly, we
suggest that you perform a series of pairwise com-
parisons between strategies. Think about the ways
in which pairs of strategies differ, and adjust the
model parameters to give identical expected results.
Using our GCA tree, for example, let’s compare the
Bx aLL and the siopsy branches. The test stralegy
should be equivalent to the Rx ALL strategy if the

expected utility

expected utility
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FIGURE 2.  Sensitivity analysis of the disutility of temporal artery
biopsy. A {above) shows analytic results in the presence of a
“bug.” B (below) shows results after the error has been cor-
recled.

same number of people are treated (sensitivity = 1.0,
specificity = 0) and there is no ill effect of testing
(the disutility of biopsy is 0). Changing these three
values should give us an identical expected utility.

Similarly, testing should be equivalent to treating
no one if the same number of individuals are treated
(sensitivity = 0, specificity = 1.0} and there is no ill
effect of testing (the disutility of biopsy is 0).

We have illustrated thus far how to determine
whether a bug is present. We've also illustrated that
sensitivity analysis may give you clues about the na-
ture and location of the bug. Armed with this infor-
mation, you are still faced with the onerous task of
finding and fixing it. There is no simple recipe for
doing this consistently or effectively, but we suggest
the following strategy. Start where you think the bug
might be, and mentally reconstruct the tree. Follow
each branch, think about the meaning of the
branch, and examine each node name as it arises.
Examine each variable as it arises to ensurc that the
form of expression is correct. When you come to a
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subtree, think about the local meaning of each var-
iable within the subtree and check whether each
variable has been correctly expressed or modified
by the binding expression. When you come to tem-
porary bindings, examine each one in turn to en-
sure that both the form of the expression and the
idea it expresses are correct. Check the variable
menu downstream from temporary bindings to en-
sure that global variable values have been correctly
changed by your temporary binding expressions.
Repeat this process until you get to the terminal
branches. If the bug doesn't turn up, widen the
search. Start closer to the root of the tree and re-
peat. More often than not, you'll end up mentally
recreating the entire tree several times before you
find the bug.

One final strategy that some analysts employ early
in the debugging process is risk analysis. A risk anal-
ysis will show how many different outcomes each
strategy has, and will report the probability value
associated with each outcome. The number of out-
comes and the reported frequencies of those out-
comes can tip you off to the presence of a bug if
they differ from your predictions. For example, in
the Rx NONE strategy, we expect three outcomes: no
GCA (most frequent), GCA without complications
(next most frequent), and GCA with complications.
If our risk analysis showed there to be fewer than
three outcomes, or if the relative frequencies dif-
fered from our predictions, this would probably
mean that a bug was present.

Table 2 e Sensitivity Analyses

MEDICAL DECISION MAKING

The Bugs That Will Not Die: A Taxonomy
of Hardy Tree Pests

If there are bugs in your tree whose will to live
exceeds your sleuthing ability, determination, and
perspicacity, consider the following checklist:

STRUCTURAL PROBLEMS

1. Symmetry problems. Have you forgotten to de-
scribe the same clinical events in each branch?
If you've used subtrees to describe common out-

comes, this is unlikely to have occurred.

. Linkage problems. Are all common events in sep-
arate branches (e.g., treatment efficacy, predictive
values of tests) “linked” by subtrees, common
variable names, or common expressions (efficacy
equations, predictive value expressions for test
results conditioned on disease prevalence)?

TECHNICAL (PROGRAMMING) ERRORS

3. Typographical errors. The most persistent bugs
fall into this category. Lower-case substituted for
upper-case letters, spelling errors, or inconsistent
abbreviations (e.g., bug #2, fig. 2), are common
problems. Developing consistent nomenclature
habits limits this type of error. We suggest you
consistently use the same upper- or lower-case
letter to start probability, utility, and Markov-state
names.

Baseline Plausible Threshold
Variable Value Range Value* Sensitive?+

Prevalence of giant cell arteritis (GCA) 0.50 0.00-1.00 NAL NAL
Probability of adverse outcome from GCA 0.12 0.05-0.40 0.86 N
Sensitivity of temporal artery biopsy 0.80 0.58-0.97 0.40 N
Specificity of temporal artery biopsy 1.00 0.80-1.00 0.42 N
Effectiveness of prednisone 0.89 0.60-1.00 NT$ N
Probability of iatrogenic side effects from prednisone 0.19 0.05-0.40 0.04 N
Disutility of biopsy 0.005 0.00-0.03 0.003 Y
Utility of GCA 0.85 0.70-0.95 0.95 Y
Utility of complications of GCA 0.60 0.20-0.85 NT§ N
Utility of taking prednisone 0.85 0.90-1.00 0.87 N
Utility of prednisone complications 0.75 0.60-0.90 0.95 N
Bias to Rx ALL — — — YT
Bias to Rx NONE — — — Y1

*The threshold value is the value of the variable at which two strategies are equivalently valued (equal expected utility or quality-adjusted life
expectancy or other index of value). This column shows the threshold nearest to the baseline value when more than one threshold exists.

+"Sensitive” here means that a strategy other than the “TesT Rx, IF POSITIVE” is preferred for some value of the variable within the plausible range.
Y = yes, the analysis is sensitive to this variable; N = no, the analysis is not sensitive.

£NA = not applicable. In this analysis, the prevalence of giant cell arteritis is assumed to be 0.50. We are evaluating diagnostic strategies when the
clinicat features of the patient suggest a pretest probability (prevalence) of 50%.

§NT = no threshold found for this variable.

{The analysis is insensitive, under the conditions of systematic bias (best-case ar worst-case scenario) if the preferred strategy does not change,

and sensitive if it does.
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4. Wrong variable/node names. Failure to delete ar-
chaic node and variable names often results in
their reuse when the tree is being edited or re-
built. Get rid of orphan nodes and unused vari-
ables and this type of error won't occur.

. Errors in temporary bindings. Bindings can be
present when they shouldn’t be, or absent when
they should be there (e.g., bug #1, fig. 1). Equa-
tions expressed in temporary bindings may have
errors. Faulty bindings are a very frequent source
of error.

w0

Evaluating Uncertainty

Let’s assume that you've been successful in elim-
inating all apparent bugs. The next step is to try to
generate some meaningful results. Folding back the
tree will give you a series of scores indicating the
expected value of each alternative. Folding back our
giant cell arteritis tree gives us the following results:
BIOPSY (expected utility = 0.9435) > Rx ALL {expected
utility = 0.9215) > Bx NONE (expected utility =
0.9046). In our baseline analysis, testing looks like
the best strategy. Remember, though, that we were
uncertain about some of the probabilities and utili-
ties we used in the model. Given that uncertainty,
how confident can we be that the testing strategy is
really the best one?

We suggest you approach this question in a sys-
tematic way by running one-way sensitivity analyses
over all ranges of all variables and placing the re-
sults in a table like table 2. The first three columns
of table 2 are self-explanatory: part 3° of this series
is about getting baseline values and plausible ranges
for input variables. The threshold value {column 4)
is the value for that variable at which two strategies
have equal analytic results {expected utility, life ex-
pectancy, etc.). At values more extreme than the
threshold value, a new strategy will be preferred. If
there are more than two strategies, some variables
may have more than one threshold. If so, report
them all in your table. Fill in the last column by
determining whether the threshold value falls within
the plausible range for that value. If it does, the re-
sult is “sensitive” to that variable. If your analysis is
insensitive to changes in any single variable within
its plausible range, congratulations, you have a fairly
robust analysis. More often than not, though, the
analysis will be sensitive to one or several variables.

Even if your analysis is robust to changes within
a single variable, though, it may not be robust to
changes in multiple variables, so the next step is
multi-way sensitivity analysis. We suggest that you
choose sets of two variables, starting with the vari-
ables to which the analysis seems most sensitive,
and calculate threshold values for each strategy. Cal-
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culating thresholds will result in a graph that looks
like figure 3. The region at the lower right, at which
the disutility of biopsy is high and the utility of giant
cell arteritis is low, consists of pairs of values that
give an analytic result favoring the Rx ALL strategy.
Conversely, the upper left region favors the Biopsy
strategy. The threshold line dividing the two regions
consists of pairs of values at which the analytic re-
sults are exactly the same for the two strategies. The
“x" represents the baseline value for both variables,
and the box encloses the range of clinically plausible
values.

In figure 3, it is possible to find a plausible set of
values for these two variables at which the Rx ALL
strategy is preferred, but this will occur only when
the disutility for biopsy and the utility for giant cell
arteritis are simultaneously close to the extremes of
their plausible ranges. Though this is possible, it is
unlikely. Exactly how unlikely we can't say, unless
we know something about the probability distribu-
tion of variables within the plausible range, infor-
mation that is not commonly available.

Because our giant cell arteritis (GCA) tree consid-
ers more than two strategies, there may be more
than one threshold. Thus, were we so inclined, we
could redraw figure 3 with additional threshold
lines comparing additional pairs of strategies.

Software packages usually allow sensitivity analy-
sis for three variables as well as two. Figure 4 illus-
trates a three-way analysis for the disutility of biopsy,
the utility of giant cell arteritis, and the prevalence
of giant cell arteritis. This graph shows that at a
prevalence of 0.25 there are no plausible values for
the other two variables at which the Rx ALL strategy
is preferred. As prevalence rises, it is increasingly
likely that combined values for the other two varia-
bles will yield a result favoring the Rx aLL strategy.
At a prevalence of 0.75, the Bx ALL strategy is almost
certain to be preferred. This coincides with clinical
intuition, which suggests that testing is likely to be
of greatest value at intermediate disease prevalence
rates.

There is no rule about which variables should be
examined in two- and three-way sensitivity analyses.
In general, though, variables that seem important in
one-way analyses should be carefully evaluated in
multi-way analyses.

As a final sensitivity analysis, we recommend eval-
uating the model under “best-case” and ‘‘worst-
case” scenarios (analysis of extremes). When evalu-
ating two strategies, set all the variables at the
exiremes of their plausible ranges to favor the first
strategy. Then, set all the variables at the opposite
extremes to favor the other strategy. For example, if
we were comparing only the Biopsy and the Rx ALL
strategies, we would first set all the variables to favor
the Bx ALL strategy as follows: high prevalence of
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GCA, low probability of adverse outcome from GCA,
low sensitivily and specificity of biopsy, high effec-
tiveness of prednisone, and so on. If there are more
than two strategies, favor each strategy in turn by
setting all the variables to the extremes that favor
that strategy. If changing a variable doesn’t improve
expected outcomes for the favored strategy, but sim-
ply penalizes one of the other two strategies (e.g.,
changing the sensitivity and specificity of lemporal
artery biopsy in an analysis biased toward the Bx aLL
strategy), leave the variable at its baseline value for
the “biased” analysis.

The last two rows of table 2 yield the results of
our “biased"” analysis. Biasing toward Rx NONE or Rx
ALL makes a difference. Under conditions of system-
atic bias (best-case or worst-case scenario), each
strategy can become the preferred one.

This completes the set of sensitivity analyses we
would recommend for a simple, beginner’s model.
There are more sophisticated ways of evaluating the

overall uncertainty in the model,*"® but these ap-
proaches are beyond the scope of this paper.

Interpreting the Results

A decision analysis has three possible outcomes:
1) strategy A is the best one; 2) the choice between
two (or more) strategies is a “toss-up” or a ‘“close
call’; 3) we don't know. The baseline analysis will
almost always give us a strategy whose score (ex-
pected utility, quality-adjusted life expectancy) is nu-
merically the highest. However, the difference be-
tween the best strategy and the next-best strategy
may be very small. Alternatively, one strategy may be
clearly better, but there is so much uncertainty that
a clear winner cannot be declared.

First, let's consider the issue of uncertainty. How
much uncertainty is too much? At the one extreme,
an analysis may be insensitive to all one-way and
multi-way analyses. Even systemalically biasing the
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analysis does not change the baseline result. Under
these circumstances, the uncertainty is small, the
analysis very robust, and the preferred option quite
clear. At the other extreme, the analysis may be sen-
sitive to small changes in one or several variables
within the clinically plausible range. A high degree
of uncertainty clearly attaches to this analytic result.

Most analyses fall between these extremes. Under
these circumstances, we recommend that you sys-
tematically review the one-way and multi-way anal-
yses. Find the variables to which the analysis is sen-
sitive, and refer back to the literature from which
they were derived. What is the quality of the evi-
dence that underlies the quantitative estimates of
probability and utility? How much variation is there
in the available data?

There is an unavoidably subjective element in in-
terpreting the results of a decision analysis, partic-
ularly this type of analysis, that precludes calculation
of the overall uncertainty in the analytic result. Thus,
you will have to make a critical judgment, based on
the sensitivity analyses and the quality of the evi-
dence, about whether the level of uncertainty in the
analysis is low enough that you can declare a clear
winner. If the uncertainty is too high, you will have
to conclude that the state of the evidence does not
permit a firm conclusion. At the very least, you will
be able to highlight the central issues in the decision
problem, and determine which variables require
further empirical evaluation.

What about the magnitude of the gain? How much
of a gain is “clinically’’ as opposed to "numerically”
significant? Decision-analytic purists might argue
that this question is immmaterial. If you have captured
all the dimensions of the decision problem in your
analysis, the analysis will give you the very best so-
lution. How much better it is than the next-best so-
lution is unimportant.® Purists, though, may need
reminding that even very sophisticated analyses usu-
ally overlook some of the relevant facets of a deci-
sion problem. Purely clinical analyses overlook cost.
Nearly all analyses ignore the relative '‘riskiness’’ of
the strategies under consideration.'””" Individual
preferences may vary with time or experience,
which may not be reflected in the analysis.” Clinical
events that have small effects on quality of life, such
as undergoing a test, may also not be represented
in the model. Finally, outcomes that result from
medical interventions may be valued differcntly by
patient and physician than outcomes that occur as
the result of an underlying disease process, even if
the outcomes are identical." Thus, very small gains
should be interpreted with caution, even if the an-
alytic result appears to be robust.

But how small a gain is small? If outcomes are
expressed as “expected utilities,” there is no general,
a priori answer to this question. Because outcomes
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are specific to the decision problem, with a unique
time frame and set of outcomes, units of “expected
utility” vary in value from analysis to analysis. Inter-
preting information about outcomes characterized
in terms of life expectancy, or quality-adjusted life
expectancy, is more straightforward. Some authors
have suggested that a life-expectancy gain of two
months is significant, since it corresponds to risk
reductions observed in clinical trials widely judged
to have clinically significant outcomes.” Gains of six
months or more would probably be considered sig-
nificant by most analysts, and are produced by in-
terventions such as smoking cessation (13 months),™
coronary bypass for severe three-vessel disease (10.8
months),” treatment of postmenopausal women
with estrogen replacement (10.3 months),"™ and cho-
lecystectomy in asymptomatic diabetic patients (6.1
months).” Gains of a few days to a few weeks are
usually,'****' though not invariably,"**** considered
“toss-ups.”

Concluding that a ‘toss-up’’ exists does not mean
you've wasted your time. Knowing that two straie-
gies are more or less equivalent is as useful as know-
ing which one is the better.” You know something
you didn’t know at the outset: that there is no major
loss or gain in choosing cither of the equivalent
strategies. You also know that making the decision
based on criteria not explicitly represented in the
model is probably legitimate.

Postanalytic Considerations

Once you've done your best Lo interpret the ana-
Iytic results generated by your model, there are
some additional issues that you will want to consider
before you announce your freshly minted clinical
policy to the world. Most of these don’t make it into
formal models, as we've discussed above. The first
is the economic factor. If two strategies are a '‘toss-
up” on clinical grounds, but one is substantially less
costly, that strategy is clearly the more attractive one.

The second issue is risk: if two strategies are a
close call, but one strategy is riskier (has a greater
chance of adverse outcomes), the less risky strategy
may be preferred by most patients. Remember that
decision models will vield an average gain for a co-
hort of like individuals. But an average can be ar-
rived at in several ways: a small gain for everyone
and a mixture of larger gains and losses will yield
the same result. The distribution of gains and losses
is nol reflected in the analytic results.

For example, let's say your decision model com-
parcs a medical option and a surgical option, and
the lalter has an immediate, nontrivial risk of peri-
operative death. If your decision model shows that
the two strategies arc formally equivalent, choosing
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the surgical option entails taking a risk of a short-
term adverse outcome (death) to achieve a better
long-term outcome, if one survives, than that
achieved by the medical option. Real patients may
prefer the less risky decision. Conversely, real pa-
tients may prefer to be screened for cancer, even if
the expected gain is trivial, because screening min-
imizes the risk of an adverse outcome.

The third issue is the ethical consequences of
each decision. Critics of decision analysis have ar-
gued that there are potential ethical problems in the
application of decision analysis, because some pa-
tients may be exposed to great losses so that others
may achieve gains.** This is something to think
about when interpreting your analysis: are there
more ''big losers"” in your winning strategy than in
other strategies? Running a risk analysis will give
you some idea of the distribution of gains and losses
in the different strategies, and may help you to eval-
uate the importance of the second and third factors.

Fourth is the issue of time. If you build a simple
{e.g., non-Markov) model, you will probably adopt a
time frame that is shorter than the life expectancy
of the patients you're considering. Are there events
beyond your time frame that might affect which
strategy is preferred? How does the passage of time
affect the efficacy of your intervention? How will
time affect the perception of health outcomes? Is
there an “adaptation” effect,” or are the deleterious
effects of the disease or the treatment worse as time
passes?

The fifth issue is the interests of others. Most an-
alytic models characterize outcomes from the pa-
tient's point of view. Illness and death, however,
have a profound impact on family and friends, doc-
tors, the health care system, and society. No deci-
sion-analytic model fully characterizes all of the im-
portant social and economic dimensions of a health
problem. Even full economic evaluations carried out
from a societal perspective overlook important di-
mensions of real decision problems. We suggest that
you carefully consider these five issues before you
declare a winner, particularly when the difference
between two strategies is small.
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Glossary

Baseline analysis: An analysis that uses the best estimate for
each variable in the model.
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Best-case/worst-case scenario: A best-case scenario consists
of setting all the variables at the extremes of their plausible
ranges to favor a single strategy. A worst-case scenario consists
of setting all of the variables so that another stralegy is favored.,
or so that the first strategy appears as unattractive as possible.

Markov model: A decision-analytic mode! that characterizes
the prognosis of a cohort of patients by assigning them to a
fixed number of heaith states and modeling transitions among
those states.

Bug: A structural or programming error in the tree.

Disutility: The disutility of a health state represents the negative
impact on quality of life associated with the state. The disutility
of a health state is, by convention, one minus its utility.

Robust: An analysis is robust if the qualitative conclusion (e.g.,
that therapy A is better than therapy B) is insensitive to the
uncertainties in the analysis, such as quantitative cstimates of
probabilities or utilities.

Linkage: The explicit relationship (by the use of bindings or
algebraic expressions) among probabilities or utilities in the
various branches of the tree that ought to be related (c.g., the
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probabilities of a bad outcome with and without treatment).

Symmetry: The consistent representation of events in all strat-
egies considered in the modcl. Events that occur in one strat-
cgy are represented in the same way in other strategies. The
construction of symmetrical models is facilitated by using sub-
trees (see below).

Subtree: A portion of the decision model that is repeated in
various places throughout the tree. In SMLTREE or DpECISION
MAKER, the programmer can use the LINK function to copy sub-
trees at various locations.

Global values: This expression is related to SMLTREE and DECI-
510N MAKER and refers to the quantitative estimates for all var-
iables found in the variable list. These values are then applied
throughout the tree at all times except where temporary bind-
ings override them.

Temporary bindings: Reassigned values of quantitative esti-
mates for specific variables that override the global bindings
at various points throughout the tree. This function is partic-
ularly useful when subtrees are placed throughout the tree
but quantitative cstimates of the variables must differ at the
various locations.

APPENDIX

How the decision tree referred to in Parts 2 and 3 of this series* is depicted in SMLTREE or
DECISION MAKER, complete with local bindings and subtrees. Students should be able to rep-

licate the tree using either of these programs.

SCA_Comp 2]
= uGCA'uGCOMP'uPRED'uPRED:p~dquI
pCOMP [
GCA

)
'pGCA

i NQ GCA_C
—————JuuCA'uRRED'uHREDcp dquJ

Rx_None SUBTREEL |
——f—=0 3

No_GCh
WPREJ*UEREDCE - dusx |
]

Bx_Pos SUBTREE2

pPOS
CHOOSE—§} Biopsy TAbx |
Fe——— %

3x_Neg SUBTREE2
[ oues sommmeee,

er_Cmp SUBTREEL
—— 0
PPREDcmp
Bx_All SUBTREE2]
o]

=i e,

NoPr_Cmp SUBTREE1

#

_]

Bindings from CHOOSE to Rx_Nore:
duBx := C
uFRED i= 1
UPREDCP :a 1
Bindirgs from CHOQJSE to Biopsy:
pPOS = SENS*pPGCA~(1-SPEC)* {1-pGCA)

Bindirgs from TAbX to Bx_Pos:

pCoOMP {1-eCCMP) *pCOMP
PGTA SENS?*pGCA/ (SENS*PGCR+ (1 -SPEC) * | 1-pGCAY)
uGCA = 1
Bindings from TAbx tc Bx_Neg:
pGCA := ({1-SENS)¥pGCA) / {(1-SENS) *pGCA~SPEC* (1-pGCA) !
pPREDcmp = 0
UPRED =1

Bandxngs frcm CHCOSE to Rx_All:
(l eCOMPj *pTOMP
LGCA
duBx

W

0

Bindings Zrom GUBTREEZ to NoPr_Cmp:
UPREDcp :=

Tree Global Value
Variable Notation in Tree

Prevalence of giant cell arteri-

tis pGCA 0.50
Probability of complications of

giant cell aneritis without

treatment pCOMP 0.12
Sensitivity of temporal artery

biopsy SENS 0.80
Specificity of temporal artery

biopsy SPEC 1.00
Probability of a positive tem- —

poral artery biopsy pPOS

Efficacy of prednisone in re-
ducing the frequency of gi-
ant cell arteritis complica-
tions eCOMP 0.89

Probability of complications

due to prednisone pPREDcmp 0.19
Disutility* of temporal artery

biopsy duBx 0.005
Utility of prednisone therapy uPRED 0.97
Utility of prednisone complica-

tions uPREDcp 0.75
Utility of giant cell arteritis

complications (blindness) uGCOMP 0.60

Utility of having giant cell ar-
teritis uGCA 0.85

*Disutility for a given health state = (1 — utility).
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